中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Modelling algal blooms in Lake Dianchi, China using neural networks

文献类型:期刊论文

作者Li, Hongbin; Hou, Guoxiang; Song, Lirong; Liu, Yongding
刊名FRESENIUS ENVIRONMENTAL BULLETIN
出版日期2007
卷号16期号:7页码:798-803
关键词algal dynamics algal bloom neural network pH sensitivity analysis
ISSN号1018-4619
通讯作者Hou, GX, Huazhong Univ Sci & Technol, Dept Ocean Sci & Engn, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
中文摘要Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.
英文摘要Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.
WOS标题词Science & Technology ; Life Sciences & Biomedicine
学科主题Environmental Sciences
类目[WOS]Environmental Sciences
研究领域[WOS]Environmental Sciences & Ecology
关键词[WOS]CROSS-VALIDATION
收录类别SCI
语种英语
WOS记录号WOS:000248571800014
公开日期2010-10-13
源URL[http://ir.ihb.ac.cn/handle/152342/8492]  
专题水生生物研究所_中科院水生所知识产出(2009年前)_期刊论文
作者单位1.Huazhong Univ Sci & Technol, Dept Ocean Sci & Engn, Wuhan 430074, Peoples R China
2.Chinese Acad Sci, Inst Hydrobiol, Wuhan 430072, Peoples R China
推荐引用方式
GB/T 7714
Li, Hongbin,Hou, Guoxiang,Song, Lirong,et al. Modelling algal blooms in Lake Dianchi, China using neural networks[J]. FRESENIUS ENVIRONMENTAL BULLETIN,2007,16(7):798-803.
APA Li, Hongbin,Hou, Guoxiang,Song, Lirong,&Liu, Yongding.(2007).Modelling algal blooms in Lake Dianchi, China using neural networks.FRESENIUS ENVIRONMENTAL BULLETIN,16(7),798-803.
MLA Li, Hongbin,et al."Modelling algal blooms in Lake Dianchi, China using neural networks".FRESENIUS ENVIRONMENTAL BULLETIN 16.7(2007):798-803.

入库方式: OAI收割

来源:水生生物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。