中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
氮掺杂碳纳米管及其垂直阵列的可控制备研究

文献类型:学位论文

作者宋曼
学位类别硕士
答辩日期2012
授予单位中国科学院金属研究所
授予地点北京
导师刘畅
关键词碳纳米管 氮掺杂 异质结构阵列 化学气相沉积法 可控制备 carbon nanotubes nitrogen doping intramolecular junction array chemicalvapor deposition controllable synthesis
学位专业材料学
中文摘要"        单壁碳纳米管(SWCNT)根据构成其石墨烯片层的卷曲方式不同,可表现为金属性或半导体性。半导体性SWCNT可用于构建场效应晶体管和光电子器件,而金属性SWCNT可用作高频装置或器件间的互连导线;因而SWCNT被认为是构建下一代纳电子器件的理想材料之一。然而SWCNT离广泛商业化应用仍有相当距离,究其原因,主要是目前还没有一种制备方法能够完全控制单壁碳纳米管的精细结构。虽然半导体性SWCNT的控制制备及选择性后期分离已有很大进展,但制备活性较高的金属性SWCNT的报道相对较少。通过异类原子掺杂实现调控SWCNT的结构和导电属性被认为是非常有前途的一种方法,更是一个挑战。本论文利用氮和碳元素原子尺寸相近可以在引起碳纳米管变形较小的情况下改变其电子结构的特点,以碳纳米管在电子器件方面的应用为目标,重点开展了浮动催化剂化学气相沉积法 (FCCVD) 制备氮掺杂单壁碳纳米管 (N-SWCNT) 以及化学气相沉积法 (CVD) 制备碳纳米管异质结垂直阵列 (CNTIJA)的工作,取得的主要结果如下:
       以二茂铁、甲烷和三聚氰胺分别作为催化剂、碳源和氮源,采用浮动催化剂化学气相沉积法制备出低掺杂量(<0.1 at.%)的N-SWCNT,通过掺杂量和掺杂形式的控制,实现了金属性富集SWCNT的可控制备,并对掺杂前后SWCNT的结构进行系统的表征和分析,研究表明:氮在SWCNT网格上的掺杂会促进金属性SWCNT的形成,然而吡啶型掺杂会在管壁中引入缺陷、抑制大直径SWCNT的生长,导致掺杂后的SWCNT的结晶性和热稳定性有所下降。通过进一步优化制备条件,实现了氮原子在SWCNT石墨网格上的直接取代掺杂,获得了高质量的N-SWCNT,其抗氧化温度高达880 ºC。表明:改进浮动催化剂化学气相沉积法可以通过氮掺杂在不改变SWCNT结晶性的同时来调控其电子结构。为大量可控制备高质量、结构均一、金属性SWCNT打下了基础。
       采用离子束辅助沉积法将Al2O3阻挡层和Fe催化剂分别均匀得溅射到SiO2/Si基体上,以乙烯和乙腈分别作为碳源和氮源制备CNT/N-CNT异质结垂直阵列。SEM和TEM观察表明:异质结部分有明显的过渡区域,XPS表征表明:异质结氮掺杂碳纳米管一侧的氮掺杂量为0.1-0.7 at.%。通过调控乙腈的反应量和反应时间可控制异质结的位置、结构、个数和氮掺杂量,进而实现具有异质结结构的碳纳米管垂直阵列的可控制备。为碳纳米管异质结构垂直阵列在二极管、纳米开关、放大器等领域的应用奠定了基础。"
公开日期2013-04-12
源URL[http://210.72.142.130/handle/321006/64527]  
专题金属研究所_中国科学院金属研究所
推荐引用方式
GB/T 7714
宋曼. 氮掺杂碳纳米管及其垂直阵列的可控制备研究[D]. 北京. 中国科学院金属研究所. 2012.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。