Randomized Wilson loops, reduced models and the large D expansion
文献类型:期刊论文
作者 | Evnin, O |
刊名 | NUCLEAR PHYSICS B
![]() |
出版日期 | 2011 |
卷号 | 853期号:2页码:461-474 |
关键词 | LATTICE GAUGE-THEORY EGUCHI-KAWAI MODEL |
ISSN号 | 0550-3213 |
通讯作者 | Evnin, O (reprint author), Acad Sinica, Inst Theoret Phys, Zhongguancun Donglu 55, Beijing 100190, Peoples R China. |
英文摘要 | Reduced models are matrix integrals believed to be related to the large N limit of gauge theories. These integrals are known to simplify further when the number of matrices D (corresponding to the number of space-time dimensions in the gauge theory) becomes large. Even though this limit appears to be of little use for computing the standard rectangular Wilson loop (which always singles out two directions out of D), a meaningful large D limit can be defined for a randomized Wilson loop (in which all D directions contribute equally). In this article, a proof-of-concept demonstration of this approach is given for the simplest reduced model (the original Eguchi-Kawai model) and the simplest randomization of the Wilson loop (Brownian sum over random walks). The resulting averaged Wilson loop displays a scale behavior strongly reminiscent of the area law. (C) 2011 Elsevier B.V. All rights reserved. |
学科主题 | Physics |
收录类别 | SCI |
资助信息 | Chinese Academy of Sciences; National Natural Science Foundation of China |
原文出处 | http://dx.doi.org/10.1016/j.nuclphysb.2011.08.007 |
语种 | 英语 |
WOS记录号 | WOS:000295544600009 |
公开日期 | 2013-05-17 |
源URL | [http://ir.itp.ac.cn/handle/311006/14210] ![]() |
专题 | 理论物理研究所_理论物理所1978-2010年知识产出 |
推荐引用方式 GB/T 7714 | Evnin, O. Randomized Wilson loops, reduced models and the large D expansion[J]. NUCLEAR PHYSICS B,2011,853(2):461-474. |
APA | Evnin, O.(2011).Randomized Wilson loops, reduced models and the large D expansion.NUCLEAR PHYSICS B,853(2),461-474. |
MLA | Evnin, O."Randomized Wilson loops, reduced models and the large D expansion".NUCLEAR PHYSICS B 853.2(2011):461-474. |
入库方式: OAI收割
来源:理论物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。