基于温度-植被指数的湖北省土壤水分遥感监测研究
文献类型:学位论文
作者 | 许国鹏 |
学位类别 | 硕士 |
答辩日期 | 2007-06 |
授予单位 | 中国科学院测量与地球物理研究所 |
授予地点 | 武汉 |
导师 | 李仁东 |
关键词 | 土壤水分 温度植被干早指数 亮温植被干早指数 归一化植被指数 地表温度 亮温 |
学位专业 | 自然地理学 |
中文摘要 | 土壤水分在地表与大气界面的水分和能量交换中起重要作用,是农业干旱监测、灌溉管理的重要指标,也是气候、水文、生态等领域的主要参数。遥感技术能迅速、大面积、多时相、周期性地获取地面信息,通过其监测土壤含水量,不仅对指导农业生产灌溉决策具有重要的实用价值,而且在资源与环境的监测和保护等方面也具有巨大的应用潜力。本文在对比了国内外各种土壤水分遥感反演方法的基础上,认为温度植被干早指数(TVDI)模型能把温度信息和植被指数信息有机地结合起来,优势互补,是遥感探测土壤水分状况有效方法之一。并在此模型基础上进行了一定的改进,提出了亮温植被干旱指数(BTVDI)。本文以2005年10月10日湖北省MODIS数据为遥感卫星信息源,以在卫星过境时段地面同步获取的土壤水分为建模和验证数据,构筑温度-植被指数特征空间,提取TVDI、BTVDI,探讨BTVDI在南方地区监测土壤水分的可靠性,取得如下结论: 1、在提取关键参数大气透过率和地表比辐射率的基础上,利用劈窗算法估算了湖北省地表温度。与地面同步实测数据比较表明,平均误差为0.51℃。 2、TVDI和BTVDI两种估算模型与10cm、20cm、50cm三个土壤深度的相关性比较表明:模型指数均与表层10cm土壤水分含量关系最密切,相关性最强,最能反映表层土壤水分状况。 3、从各土层水分含量分别与TVDI、BTVDI建立的模型精度看,在南方地区下垫面较复杂的情况下,它们最好的相关性分别为0.350、0.267。与其它在同类地区研究的结果相差不大。 4、经定量分析和实际验证,提出了在天气晴朗、大气状况比较稳定的情况下,用亮温代替地表真实温度,构筑Tb-NDVI特征空间,提取亮温植被干旱指数(BTVDI),用BTVDI估算土壤水分基本上能达到与TVDI一样的效果 |
英文摘要 | Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. It is one of important indicators on drought monitoring and irrigative management, also is one of parameters on Climatology, Hydrology and Bionomics. Remote sensing technology can rapidly and periodically obtain land information broadly. Using it to monitor regional soil moisture has significant application for agricultural production, environmental and resource management. After analyzing and comparing all kinds of models about soil moisture reversion, we think that Temperature Vegetation Dryness Index(TVDI), combining temperature and vegetation index, is related to soil moisture. It has proved to be one of efficient methods on monitoring soil moisture by remote sensing. Based on TVDI, this paper bring forward a new model-BTVDI. This research select MODIS image of Hubei Province obtained on October 10,2005, and mass soil moisture obtained at same time the images, the temperature/vegetation index characteristic space is constructed, and the quantitative relationship between TVDI,BTVDI and soil moisture is analyzed. The following is the results of this paper: ⑴ Based on retrieving the atmospheric transmittance and the surface emissivity using MODIS image, the values of LST in Hubei Province are derived by split-window algorithm. The comparison with the ground synchronization observation data shows that the total average error is 0.51℃. ⑵ The result of regression analysis on estimated models(TVDI, BTVDI) about soil moisture in 10cm, 20 cm, 50cm that shows that the relativity of the top soil moisture and model index is the most consanguineous, and the model indexes reflect top soil moisture status well. ⑶ The regression models between soil moisture of each depth and TVDI, BTVDI are built. For the landsurface of south China is more complex, the best relativities are 0.350、0.267. ⑷ By quantitative analysis and validation,we find that BTVDI, derived from Tb/NDVI space nearly has same precision on estimating soil moisture with TVDI in the case of weather clearness and atmosphere status stabilization |
语种 | 中文 |
公开日期 | 2013-01-17 |
源URL | [http://ir.whigg.ac.cn//handle/342008/3695] ![]() |
专题 | 测量与地球物理研究所_学生论文_学位论文 |
推荐引用方式 GB/T 7714 | 许国鹏. 基于温度-植被指数的湖北省土壤水分遥感监测研究[D]. 武汉. 中国科学院测量与地球物理研究所. 2007. |
入库方式: OAI收割
来源:测量与地球物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。