中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
Machine learning assisted design of high entropy alloys with desired property

文献类型:期刊论文

作者Wen C5,6,7; Zhang Y6,7; Wang CX6,7; Xue DZ4; Bai Y6,7; Antonov S3,7; Dai LH(戴兰宏)2; Lookman T1; Su YJ6,7
刊名ACTA MATERIALIA
出版日期2019-05-15
卷号170页码:109-117
关键词Multi-principal element alloys Active learning Machine learning Materials genome initiative
ISSN号1359-6454
DOI10.1016/j.actamat.2019.03.010
通讯作者Xue, Dezhen(xuedezhen@xjtu.edu.cn) ; Su, Yanjing(yjsu@ustb.edu.cn)
英文摘要We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system. We fabricated several alloys with hardness 10% higher than the best value in the original training dataset via only seven experiments. We find that a strategy using both the compositions and descriptors based on a knowledge of the properties of HEAs, outperforms that merely based on the compositions alone. This strategy offers a recipe to rapidly optimize multi-component systems, such as bulk metallic glasses and superalloys, towards desired properties. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
分类号一类
URL标识查看原文
WOS关键词MECHANICAL-PROPERTIES ; PHASE SELECTION ; BEHAVIOR ; MICROSTRUCTURE ; THERMODYNAMICS ; ELEMENT ; ALCOCRCUFENI ; SEARCH
资助项目National Key Research and Development Program of China[2016YFB0700505] ; National Natural Science Foundation of China[51671157] ; 111 project[B170003] ; Los Alamos National Laboratory
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000466252400010
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China ; 111 project ; Los Alamos National Laboratory
其他责任者Xue, Dezhen ; Su, Yanjing
源URL[http://dspace.imech.ac.cn/handle/311007/79185]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
2.Chinese Acad Sci, Inst Mech, Lab Nonlinear Mech Continuous Media LNM, Beijing 100080, Peoples R China;
3.Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;
4.Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China;
5.Guangdong Ocean Univ, Sch Mech & Power Engn, Zhanjiang 524000, Peoples R China;
6.Univ Sci & Technol Beijing, Ctr Corros & Protect, Beijing 100083, Peoples R China;
7.Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China;
推荐引用方式
GB/T 7714
Wen C,Zhang Y,Wang CX,et al. Machine learning assisted design of high entropy alloys with desired property[J]. ACTA MATERIALIA,2019,170:109-117.
APA Wen C.,Zhang Y.,Wang CX.,Xue DZ.,Bai Y.,...&Su YJ.(2019).Machine learning assisted design of high entropy alloys with desired property.ACTA MATERIALIA,170,109-117.
MLA Wen C,et al."Machine learning assisted design of high entropy alloys with desired property".ACTA MATERIALIA 170(2019):109-117.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。