中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Remarks on global well-posedness of mild solutions to the three-dimensional Boussinesq equations

文献类型:期刊论文

作者Yang JQ(杨佳琦)
刊名JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
出版日期2019-10-15
卷号478期号:2页码:1020-1026
关键词Boussinesq equations Global well-posedness Mild solutions
ISSN号0022-247X
DOI10.1016/j.jmaa.2019.05.063
英文摘要

Recently, by using the argument of Lei & Lin (2011) [11], Liu & Gao (2017) [13] establish the global well-posedness of mild solutions to the three-dimensional Boussinesq equations in the space chi(-1) defined by chi(-1) = {u is an element of D'(R-3) : integral(R3) vertical bar xi vertical bar(-1)vertical bar(xi) over cap (-1)vertical bar xi < infinity < col. However, it seems that their proof is incorrect, and has some obvious and essential mistakes. Compared with the Navier-Stokes equations, it is difficulty to obtain a global well-posedness of mild solutions to the Boussinesq system in the space chi(-1). In this paper, we will point out the mistakes of Liu Sz Gao. And, furthermore, in order to understand the difficulty of the Boussinesq system better, we study an illuminating system as follows: {partial derivative(t)u + (u . del)u - mu(1 + t)(alpha) del u + del p = theta e(3), in R-3 x (0, infinity), partial derivative(t)theta + (u . del)theta - k (1 + t)(alpha) Delta theta, in R-3 x (0, infinity), del . u = 0, in R-3 x (0, infinity), u(x, 0) = u(0), theta(x,0) = theta degrees, in R-3, where mu > 0, k > 0 and alpha > 1 are real constant parameters. By using the time-weighted estimate, we can show that the above system has a global mild solution. (C) 2019 Elsevier Inc. All rights reserved.

分类号二类
WOS关键词TIME DECAY
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000475547900036
其他责任者Yang, Jiaqi
源URL[http://dspace.imech.ac.cn/handle/311007/79473]  
专题力学研究所_流固耦合系统力学重点实验室(2012-)
推荐引用方式
GB/T 7714
Yang JQ. Remarks on global well-posedness of mild solutions to the three-dimensional Boussinesq equations[J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,2019,478(2):1020-1026.
APA Yang JQ.(2019).Remarks on global well-posedness of mild solutions to the three-dimensional Boussinesq equations.JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS,478(2),1020-1026.
MLA Yang JQ."Remarks on global well-posedness of mild solutions to the three-dimensional Boussinesq equations".JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 478.2(2019):1020-1026.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。