中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Direction-Context-Inspiration Network for Defocus Region Detection in Natural Images

文献类型:期刊论文

作者Zhao, Fan2; Wang, Haipeng1; Zhao, Wenda3
刊名IEEE ACCESS
出版日期2019
卷号7页码:64737-64743
关键词Defocus region detection direction-context-inspiration network level-integration
ISSN号2169-3536
DOI10.1109/ACCESS.2019.2916332
通讯作者Wang, Haipeng(whp5691@163.com)
英文摘要Defocus region detection (DRD) problem aims to assign per-pixel predictions of focus clear areas and defocus blur areas. One of the challenges in this problem is to accurately detect the boundary of the transition region between the focus and defocus regions. To address this issue, the paper proposes a direction-context-inspiration network (DCINet), which can take advantage of the directional context effectively. First, we extract directional context by recurrent neural networks initialized with the identity matrix (IRNN) to weight the feature maps and integrate them in the two-group integration method, which can produce the coarse DRD maps. Second, the maps are level-integrated with the source image guiding and the coarse maps are refined gradually. The overall DCINet can integrate low-level details and high-level semantics efficiently. The Experimental results demonstrate that the network can detect the boundary of the transition region precisely, achieving the state-of-the-art performance.
WOS关键词BLUR DETECTION
资助项目National Natural Science Foundation of China[61801077] ; National Natural Science Foundation of China[61771088] ; China Postdoctoral Science Foundation[2017M611221]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000470032800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; China Postdoctoral Science Foundation ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; China Postdoctoral Science Foundation ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; China Postdoctoral Science Foundation ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; China Postdoctoral Science Foundation
源URL[http://cas-ir.dicp.ac.cn/handle/321008/171969]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Wang, Haipeng
作者单位1.Naval Aviat Univ, Inst Informat Fus, Yantai 264001, Peoples R China
2.Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
3.Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Fan,Wang, Haipeng,Zhao, Wenda. Deep Direction-Context-Inspiration Network for Defocus Region Detection in Natural Images[J]. IEEE ACCESS,2019,7:64737-64743.
APA Zhao, Fan,Wang, Haipeng,&Zhao, Wenda.(2019).Deep Direction-Context-Inspiration Network for Defocus Region Detection in Natural Images.IEEE ACCESS,7,64737-64743.
MLA Zhao, Fan,et al."Deep Direction-Context-Inspiration Network for Defocus Region Detection in Natural Images".IEEE ACCESS 7(2019):64737-64743.

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。