中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 (2)A ' states of LiFH

文献类型:期刊论文

作者Guan, Yafu2; Zhang, Dong H.1,3; Guo, Hua4; Yarkony, David R.2
刊名PHYSICAL CHEMISTRY CHEMICAL PHYSICS
出版日期2019-07-14
卷号21期号:26页码:14205-14213
ISSN号1463-9076
DOI10.1039/c8cp06598e
通讯作者Guan, Yafu(yguan15@jhu.edu)
英文摘要An analytic quasi-diabatic representation of ab initio electronic structure data is key to the accurate quantum mechanical description of non-adiabatic chemical processes. In this work, a general neural network (NN) fitting procedure is proposed to generate coupled quasi-diabatic Hamiltonians (H-d) that are capable of representing adiabatic energies, energy gradients, and derivative couplings over a wide range of geometries. The quasi-diabatic representation for LiFH is used as a testing example. The fitting data including adiabatic energies, energy gradients and interstate couplings are obtained from a previously fitted analytical quasi-diabatic potential energy matrix, and are well reproduced by the NN fitting. Most importantly, the NN fitting also yields quantum dynamic results that reproduce those on the original LiFH diabatic Hamiltonian, demonstrating the ability of NN to generate highly accurate quasi-diabatic Hamiltonians.
WOS关键词QUANTUM DYNAMICS ; CONICAL INTERSECTIONS ; FEEDFORWARD NETWORKS ; SCATTERING ; CHEMISTRY ; RIDGES
资助项目Department of Energy[DE-SC0015997] ; National Natural Science Foundation of China[21433009] ; National Natural Science Foundation of China[21590804] ; National Natural Science Foundation of China[21688102]
WOS研究方向Chemistry ; Physics
语种英语
WOS记录号WOS:000474136100031
出版者ROYAL SOC CHEMISTRY
资助机构Department of Energy ; Department of Energy ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Department of Energy ; Department of Energy ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Department of Energy ; Department of Energy ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Department of Energy ; Department of Energy ; National Natural Science Foundation of China ; National Natural Science Foundation of China
源URL[http://cas-ir.dicp.ac.cn/handle/321008/175124]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Guan, Yafu
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret Computat Chem, Dalian 116023, Peoples R China
2.Johns Hopkins Univ, Dept Chem, Charles & 34Th St, Baltimore, MD 21218 USA
3.Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
4.Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
推荐引用方式
GB/T 7714
Guan, Yafu,Zhang, Dong H.,Guo, Hua,et al. Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 (2)A ' states of LiFH[J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS,2019,21(26):14205-14213.
APA Guan, Yafu,Zhang, Dong H.,Guo, Hua,&Yarkony, David R..(2019).Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 (2)A ' states of LiFH.PHYSICAL CHEMISTRY CHEMICAL PHYSICS,21(26),14205-14213.
MLA Guan, Yafu,et al."Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 (2)A ' states of LiFH".PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.26(2019):14205-14213.

入库方式: OAI收割

来源:大连化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。