以离子通道为基础的动物生存策略研究进展
文献类型:学位论文
作者 | 罗雷 |
答辩日期 | 2018-06 |
文献子类 | 博士 |
授予单位 | 中国科学院大学 |
授予地点 | 北京 |
导师 | 赖仞 |
关键词 | Trpv1 失活 Kcnq Sstx Retigabine Desensitization |
学位名称 | 理学博士 |
学位专业 | 动物学 |
其他题名 | RESEARCH PROGRESS ON ANIMAL SURVIVAL STRATEGY BASED ON ION CHANNEL |
英文摘要 | 动物生存策略是复杂而精密的分子系统,目前对这一策略的认识大多停留在行为学、生理学、解剖学等阶段。而我们认为,探索动物生存策略的分子基础,是人类得以认识自然和改造自然的核心问题。离子通道是重要的膜蛋白受体,其基本功能包括调控动作电位和电信号,感知环境温度,调节体温,触发肌肉收缩、腺体分泌和神经突触传递等一系列生理反应,而离子通道活动的微小改变会直接带来机体的生理功能变化,因而与动物生存策略密切相关。本文提供了两项以离子通道功能为基础的动物生存策略研究进展。其一,离子通道TRPV1的结构功能进化是哺乳动物对环境温度适应的分子基础;其二,离子通道KCNQ是产毒动物生存策略中的重要干预靶点。动物对环境温度的适应策略:TRPV1通道是重要的伤害性感受器,多种物理和化学刺激能激活TRPV1从而引发疼痛。因此,它是感知外界刺激的重要元件。特别的是,TRPV1在高于42 °C的环境中被激活,是经典的热敏感通道。近期的研究进一步证实,TRPV1是哺乳动物感知伤害性热刺激的重要元件。TRPV1的门控机制,尤其是温度调控,一直是领域内的热点问题,但TRPV1热脱敏的生物学意义及其门控机制尚未得到揭示。在本论文中,我们首先提出了TRPV1热失活是哺乳动物温度适应分子基础的假说,并通过对一个种属特异性TRPV1分子的深入研究,阐明了热失活的分子机制,初步建立了TRPV1热失活与哺乳动物温度适应的关系。产毒动物的捕食策略:蜈蚣利用毒液进行高效的捕食和防御,而毒素的生物合成会大量消耗时间和生物体能量。因此,毒液系统在进化过程中不断优化,使其更有效地调控具有重要生理功能的受体,达到靶向多种生理系统的目的。本实验室的前期工作对蜈蚣叮咬导致急性疼痛的分子机制进行了详尽的描述,但尚未揭示其导致严重临床症状的分子基础(例如心肌缺血、心衰、呼吸抑制等)。本论文将详尽描述KCNQ通道在蜈蚣高效捕食和引发严重临床症状方面的核心作用,并提供靶向性的治疗策略。本论文主要分为三个章节进行阐述:第一章为本论文研究的基础背景,包括对现阶段TRPV1的研究进展的概述,以及简述已经探明的蜈蚣生存策略的分子基础。第二章中,我们结合遗传学分析和详尽的功能研究探索了TRPV1通道热失活的机制。通过遗传学分析,我们发现:(1)在进化过程中鸭嘴兽TRPV1通道 (pTRPV1) 基因受到强烈的正选择;(2)pTRPV1对已知的所有激活方式有正常的响应,例如辣椒素、温度、质子、Mg2+等二价阳离子、2APB和动物多肽毒素;(3)pTRPV1的热激活阈值显著低于其他哺乳动物TRPV1通道 (例如小鼠、人、骆驼等),pTRPV1的热激活阈值仅为34 °C,低于其他哺乳动物的39 °C阈值;(4)pTRPV1不发生其他TRPV1具有的热失活现象;(5)TRPV1的N-和C-端的突变会影响TRPV1通道的热失活;(6)将mTRPV1的N-和C-端同时替换给pTRPV1使得构建的嵌合体pV1_mNC获得了热失活的性质;(7)C-末端单体可以竞争性结合TRPV1的N-末端并完全抑制TRPV1的热失活;(8)TRPV1 的N-和C-末端存在直接相互作用,并随着温度的升高亲和力越强;(9)TRPV1的 N-端和C-端在通道热失活过程中不断靠近,并特异性偶联于通道外孔区的构象变化而发生孔区关闭。该工作已完成的内容提示:1) TRPV1的N-和C-两端是通道热失活的“敏感元件”,它们之间直接相互作用是通道发生热失活的“分子开关”; 2) pTRPV1在温度门控中展示的特性可能是鸭嘴兽适应环境温度的分子基础。目前,我们正在利用pTRPV1基因敲入小鼠探索pTRPV1分子水平的热失活缺失与鸭嘴兽高温不耐受行为学的相互关系。第三章中,我们提供了蜈蚣围绕离子通道KCNQ建立捕食策略和引发严重临床症状的分子证据,并以此为依据,提出了靶向性临床干预手段。我们首先通过对蜈蚣毒液成分的活性追踪,找到了蜈蚣迅速征服巨大猎物的的分子机制。我们发现:(1)蜈蚣可以迅速制服体重大于自身15倍的小型哺乳动物;(2)通过对毒液活性成分追踪和分离纯化我们鉴定出一个多肽毒素SsTx,其溶液结构表面SsTx 结构紧凑,呈现明显的极性;(3)SsTx选择性的作用于KCNQ通道家族,对KCNQ4的IC50为2.5 μM;(4)SsTx与KCNQ的相互作用对孔区离子流敏感,提示SsTx可能作为孔区阻断剂发挥功能;(5)对KCNQ4胞外区域和SsTx带电氨基酸进行丙氨酸扫描,结果发现通道上的D266和D288,毒素上的K4、K10、K11、R12、K13和K45的突变影响了毒素对通道的结合,双突变循环和分子docking共同证实了D266-K13和D288-R12的直接相互作用形成盐键并保证SsTx-KCNQ复合物的构象稳定;(6)蜈蚣粗毒和SsTx均能引起大鼠胸主动脉环的收缩,将SsTx从粗毒中去除后收缩反应显著降低,说明SsTx是蜈蚣毒液中引起血管平滑肌收缩的关键因素;(7)小鼠或猕猴注射粗毒和SsTx能引起血压的急剧升高,同时出现心肌缺血症状;(8)SsTx可以引起大鼠的支气管平滑肌收缩,继而导致呼吸频率下降,呼吸幅度增加;(9)小鼠海马区注射SsTx导致癫痫和乙酰胆碱分泌;(10)SsTx还可以导致心肌细胞的动作电位时程延长;(11)将SsTx注射到小鼠皮下会引起皮肤组织坏死和炎症反应;(12)KCNQ激动剂RTG可以在组织水平和动物水平上有效干预粗毒和SsTx诱导的生理效应。本研究的意义在于:1)发现了蜈蚣毒液中的关键毒素分子SsTx;2)阐明了KCNQ通道家族是蜈蚣捕食和诱导严重临床症状的高效结合靶点;3)为蜈蚣叮咬导致的严重临床症状干预提供了候选药物RTG;4)揭示了离子通道是产毒动物生存策略中的重要结合靶点。本文通过对TRPV1和KCNQ的研究,反映了离子通道在动物生存策略中的重要功能:其一,离子通道的结构功能进化是动物环境适应的分子基础;其二,离子通道是产毒动物生存策略中的重要结合靶点。本论文分别以适应和捕食作为切入点,提供了离子通道结构、进化、门控、干预等方面的新信息,揭示了离子通道与动物生存策略的精密内在联系。 |
学科主题 | 生物学 |
语种 | 中文 |
源URL | [http://ir.kiz.ac.cn:8080/handle/152453/12518] ![]() |
专题 | 昆明动物研究所_昆明动物研究所 昆明动物研究所_动物模型与人类重大疾病机理重点实验室 昆明动物研究所_动物毒素室 |
推荐引用方式 GB/T 7714 | 罗雷. 以离子通道为基础的动物生存策略研究进展[D]. 北京. 中国科学院大学. 2018. |
入库方式: OAI收割
来源:昆明动物研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。