中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
高性能聚烯烃基形状记忆及发泡材料的微纳层次结构调控

文献类型:学位论文

作者艾则孜·麦麦提明
答辩日期2019-06-01
文献子类博士
授予单位中国科学院大学(中国科学院上海应用物理研究所)
授予地点中国科学院大学(中国科学院上海应用物理研究所)
导师吴国忠
关键词聚丁烯-1 烯烃多嵌段共聚物 热塑性聚烯烃 辐射 长支链 形态 形状记忆效应 超临界二氧化碳发泡
英文摘要随着节能减排和环保问题的日益突出,使用轻量化和单一化材料成为汽车、家电、电线电缆和风力发电叶片等行业发展的绿色潮流与趋势。烯烃类热塑性弹性体(TPEO)、共混型热塑性聚烯烃(C-TPO)及其发泡材料只含碳氢元素、质轻、性价比高、综合性能优良、可回收再重复利用等优点,从而广泛应用于汽车内外饰件、洗衣机转筒、电线电缆护套、建筑防水卷材及保温材料、光伏封装、物流包装、鞋底和自行车轮胎等。为满足更高端应用市场需求和节能减排环保要求,通常运用先进烯烃催化聚合技术和加工过程,通过在树脂生产和制品成型过程中分别“剪裁”链拓扑结构和调控凝聚态结构开发高端专用聚烯烃产品。本文以高性能等规聚(1-丁烯)(iPB-1)、烯烃多嵌段共聚物(OBC)和软、硬CTPO为研究对象,旨在以辐射改性手段“剪裁”iPB-1的长支链结构、OBC和软TPO的非均相交联链结构,从而调控其相应的多晶态结构及其转变、微相分离结构和取向多相结构,并且采用超临界二氧化碳间歇釜发泡手段控制交联OBC及其硬C-TPO材料的微孔发泡结构与形态,结合高温GPC(配备三个检测器)、高温13C-NMR、ARES-G2、XRD、DSC、SEM、2D-SAXS和DMTA等先进表征与测试方法,建立微纳层次结构与性能之间的定量关系。具体研究结果如下:(1)作为高性能绿色管道材料的iPB-1存在慢速晶型Ⅱ-I转变问题,从而限制了其大规模工业应用。本部分建立了iPB-1的长支链(LCB)结构、线团收缩构象与多晶态结构及其转变之间的关系。LCB线团收缩构象、可结晶1-丁烯序列长度和结晶条件显著影响多晶态结构及及其转变,其中线团收缩构象起关键作用。低、中支化iPB-1的长支链线团收缩程度低、可结晶1-丁烯序列长,而高支化iPB-1的则相反。高结晶速率下,前者熔体结晶形成晶型Ⅱ和Ⅲ的混合晶,而后者形成聚合物科学罕见的片晶扭曲的纯晶型Ⅲ;LCB-PB中晶间接链(缠结环、tie-分子和晶型Ⅲ)的数量高,晶型Ⅱ-I转变速率高。低结晶速率下,前者熔体结晶主要形成晶型Ⅱ,而后者形成晶型Ⅱ、Ⅲ和I'的混合晶;LCB-PB中晶间接链数量低,晶型Ⅱ-I转变速率低。随着晶型Ⅲ含量的增加,LCB-PB刚性下降,延展性提高,而含有晶型I、Ⅲ和I'的高支化iPB-1显示出脆性。常温拉伸时,晶型Ⅲ转变为晶型I;加热时,交联的高支化iPB-1中晶型Ⅲ不会重结晶形成晶型Ⅱ。(2)针对TPEO基形状记忆高分子(SMPs)的熔体强度低而耐高温性差、形状转变温度低而范围窄以及力学性能较差等问题,通过中分子量聚烯烃弹性体(POE)与纺丝级(YP)和高熔体强度发泡级(HP)聚丙烯(PP)共混并辐照,制备了高强、耐高温三重形状记忆弹性体(SMR)。辐射交联后,SMR原位形成独特的非均相交联链结构:POE的交联无定形链段及可结晶聚乙烯链段与长支链聚丙烯以共价键键合。平均尺寸为1.6×11μm的盘状PP相分散在POE连续相中且沿薄膜表面平行取向;采用不同共混工艺和辐照过程制备的SMR取向多相结构具有重现性。PP片晶的(040)_α和(110)_α晶面分别平行和垂直于高度交联薄膜表面。POE的束状晶体不受辐照影响,而其重结晶温度降低。在固态下,SMR的拉伸强度(σ_b)为31–38 MPa、断裂伸长率(ε_b)为900–1100%、100%定伸强度(σ_y)为8.5–12 MPa。形状转变温度范围大于80℃,SMR在熔体下可拉伸至500%的应变。通过优化变形和形状恢复条件,可以分别固定和变形SMR的复杂起始态和变形态;形状固定率(R_f)分别为82和97%,形状恢复率(R_r)分别为88%和97%,总Rr为95–97%。(3)针对OBC的低熔体强度导致其二重形状记忆效应(D-SME)和发泡性能变差等问题,系统研究了不同辐射源和吸收剂量对不同链结构OBC的交联程度、结晶行为和拉伸性能的影响,并探讨了其超临界二氧化碳(Sc-CO_2)间歇釜发泡性能。含高1-辛烯含量的高分子量OBC在较低吸收剂量下交联,而中分子量OBC在较高吸收剂量下交联,而且在更高剂量下交联时仍保持弹性。随着吸收剂量的增加,σ_y和ε_b降低,σ_b先增加而后降低。辐射交联主要发生在软链段区域,因此,交联对结晶行为和热性能不产生显著影响。当吸收剂量高于50 kGy时,交联OBC熔体强度大幅度提高而显示了优异的D-SME,且Rf和Rr在93%以上。微相分离结构、选择性交联链结构和Sc-CO_2的扩散性能显著影响OBC的发泡性能。发泡温度为122和126℃时,发泡弹性体泡孔高度平行于片材表面;随着吸收剂量的增加,平均泡孔尺寸从220μm减少至34μm。软、硬链段在ScCO_2中的不同溶胀程度导致形成不同尺寸的泡孔。降压时,Sc-CO_2的扩散能力从皮层至芯层递减式减弱,引起泡孔尺寸、数量和不同尺寸的泡孔层厚度从皮层至芯层梯度式增大。发泡温度对交联OBC的泡孔尺寸不产生显著影响。(4)采用Sc-CO_2发泡注塑成型工艺制造的聚丙烯纳孔发泡材料韧性不够高、耐低温冲击性能差、形成皮-芯结构和发泡倍率低。本部分把中分子量OBC与YP和HP共混制备高性能Y/H-TPO,研究了其Sc-CO_2间歇釜发泡性能,建立了泡孔结构及形态与力学性能的关系。OBC的加入不仅降低PP的复合粘度,而且大幅度提高PP的熔体弹性,而且不影响PP的熔化温度和结晶温度。因此,OBC的加入使YP的发泡窗口温度从5℃提高至Y-TPO的22℃。Y-TPO中的球状OBC分散相平均尺寸为1.05μm,其多相形态为海-岛结构。发泡温度为135–150℃时,微孔发泡Y-TPO的平均泡孔尺寸为3.66–6.62μm,eb在450%以上,表观sy(50%)和sb分别为17.5 MPa和23 MPa左右。此类TPO采用Sc-CO_2发泡注塑工艺制造高韧、高强TPO微纳孔材料方面显示了潜在的应用价值。H-TPO模压时,形成皮层(双连续)-芯层(海-岛)的非均相层级结构,芯层中OBC分散相的平均尺寸为1.16μm。H-TPO发泡后形成皮-芯泡孔形态。当发泡温度从135℃提高至153℃时,平均泡孔尺寸从2.84μm增大至8.75μm,eb从635%降低至350%,表观sy(50%)从20.3 MPa降低至16.05 MPa,表观sb从27.8 MPa降低至20.5 MPa。总之,当泡孔尺寸小于2–4μm的临界增韧尺寸时,OBC和泡孔起到协同增韧作用,从而微孔发泡TPO材料显示超高韧度和高强度;然而,当泡孔尺寸大于30μm时,微孔发泡TPO显示脆性,不能作为材料使用。
语种中文
页码152
源URL[http://ir.sinap.ac.cn/handle/331007/31179]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
推荐引用方式
GB/T 7714
艾则孜·麦麦提明. 高性能聚烯烃基形状记忆及发泡材料的微纳层次结构调控[D]. 中国科学院大学(中国科学院上海应用物理研究所). 中国科学院大学(中国科学院上海应用物理研究所). 2019.

入库方式: OAI收割

来源:上海应用物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。