中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
数字化束流信号处理器在逐束团电荷量及工作点测量中的应用技术研究

文献类型:学位论文

作者陈方舟
答辩日期2019-06-01
文献子类博士
授予单位中国科学院大学(中国科学院上海应用物理研究所)
授予地点中国科学院大学(中国科学院上海应用物理研究所)
导师冷用斌
关键词上海光源 电子储存环 逐束团电荷量测量 工作点测量 Touschek寿命 真空寿命
英文摘要上海光源(Shanghai Synchrotron Radiation Facility,SSRF)电子储存环周长432m,用以储存3.5 GeV电子束并发出高品质的同步辐射光,在500MHz高频下全环共有720个RF buckets。束流诊断系统是加速器供光和调试过程中重要的工具。随着快电子学技术的进步,束流诊断从最初的多圈平均测量提速到逐圈测量,如今借助于高性能的束流信号处理器,逐束团的束流诊断技术成为了束测领域最重要的发展方向之一。上海光源二期升级会引入大量插入件,使得束流尾场引起的耦合不稳定性问题较为严重,迫切需要逐束团诊断工具,对束团不稳定性进行精确定量分析进而进行控制;另一方面,加速器逐束团诊断系统也能为加速器物理学家研究束团运动物理过程提供一套强有力的分析工具。逐束团诊断技术在调束运行、研究加速器性能和观测耦合束团不稳定性等方面的需求越来越多,作用也越来越大。自2009年开始,上海光源束测团队在逐束团诊断技术方向展开研究工作,搭建了包括横向位置测量、纵向位置测量、束长测量、横向束斑尺寸测量在内的多参数逐束团诊断平台,探索了逐束团诊断技术在同步辐射光源日常运行及机器研究中的多种应用,在三维位置测量、三维束团尺寸方面取得了很好的成果,但受现有仪器设备测量精度、传统信号处理方法以及传统测量方法的局限,前期工作中在逐束团电荷量精确测量、逐束团寿命测量以及微扰乃至无扰工作点测量几个方向上尚未做深入的研究。本论文的研究工作就在此基础上展开,主要包含以下3方面内容。对逐束团诊断系统中数字化束流信号处理器的技术指标要求进行了汇总分析,在此基础上重点讨论了束团间串扰以及通道间串扰对测量系统性能的影响,讨论了这些特征参数的测试评估方法及信号处理过程中可以采用的补偿算法,并给出了相应的应用实例。设计并搭建了新的高精度逐束团电荷量监测(Bunch Charge Monitor,BCM)系统。利用束流信号处理器的高数据刷新率和高分辨率等优点,精确提取钮扣型束流位置监测器(Beam Position Monitor,BPM)四电极和信号所包含的束团电荷量信息,实现逐束团寿命在线快速测量。为了降低由于同步振荡、时钟抖动等引起的采样相位晃动所引入的系统误差,提出一种新的对冲式两点相位采样法对束流信号进行量化处理。束流实验结果表明,在正常供光模式下(平均流强240mA),新建系统的电荷量相对测量分辨率优于0.02%,与上海光源原有的BCM系统电荷量分辨率(0.1%)相比有了显著提升。得益于BCM系统的高分辨率和数据刷新率,使得逐束团寿命的精确测量成为可能,在此基础上提出了一种在线测量束团Touschek寿命及真空寿命的新方法,在上海光源储存环上完成的束流实验结果表明该方法可实时测定束流Touschek寿命及真空寿命,实验结果与理论预期相符。对电子储存环中的无扰或微扰工作点测量方法进行了研究。参照重离子储存环中使用的无扰工作点测量新方法(base band tune,BBQ),代入上海光源储存环参数对BBQ方法进行了仿真评估,研制了测试电路进行了初步束流实验。仿真及实验结果均表明BBQ方法对于上海光源储存环而言效果不佳。在此基础上,提出一种基于逐束团信号采集处理的微扰工作点测量方法:采集钮扣电极模拟信号,对其和差处理并频谱分析证实了无扰的工作点的测量的可行性,并设计了验证性实验。束流实验结果证实了在供光状态下,逐束团工作点监测系统能够实现微扰的工作点测量。
语种中文
页码122
源URL[http://ir.sinap.ac.cn/handle/331007/31183]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
推荐引用方式
GB/T 7714
陈方舟. 数字化束流信号处理器在逐束团电荷量及工作点测量中的应用技术研究[D]. 中国科学院大学(中国科学院上海应用物理研究所). 中国科学院大学(中国科学院上海应用物理研究所). 2019.

入库方式: OAI收割

来源:上海应用物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。