Automatic Carotid Artery Detection Using Attention Layer Region-Based Convolution Neural Network
文献类型:期刊论文
作者 | Wang, Xiaoyan1; Zhong, Xingyu1; Xia, Ming1; Jiang, Weiwei1; Huang, Xiaojie2; Gu, Zheng2; Huang, Xiangsheng3![]() |
刊名 | INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS
![]() |
出版日期 | 2019-08-01 |
卷号 | 16期号:4页码:17 |
关键词 | Object detection convolutional neural networks ensemble feature maps |
ISSN号 | 0219-8436 |
DOI | 10.1142/S0219843619500154 |
通讯作者 | Wang, Xiaoyan(xiaoyanwang@zjut.edu.cn) |
英文摘要 | Localization of vessel Region of Interest (ROI) from medical images provides an interactive approach that can assist doctors in evaluating carotid artery diseases. Accurate vessel detection is a prerequisite for the following procedures, like wall segmentation, plaque identification and 3D reconstruction. Deep learning models such as CNN have been widely used in medical image processing, and achieve state-of-the-art performance. Faster R-CNN is one of the most representative and successful methods for object detection. Using outputs of feature maps in different layers has been proved to be a useful way to improve the detection performance, however, the common method is to ensemble outputs of different layers directly, and the special characteristic and different importance of each layer haven't been considered. In this work, we introduce a new network named Attention Layer R-CNN(AL R-CNN) and use it for automatic carotid artery detection, in which we integrate a new module named Attention Layer Part (ALP) into a basic Faster R-CNN system for better assembling feature maps of different layers. Experimental results on carotid dataset show that our method surpasses other state-of-the-art object detection systems. |
资助项目 | Natural Science Foundation of Zhejiang Province[LY18F030019] ; Natural Science Foundation of Zhejiang Province[LY18F020030] ; National Natural Science Foundation of China[11302195] ; National Natural Science Foundation of China[61401397] ; National Natural Science Foundation of China[61701442] ; National Natural Science Foundation of China[61573356] ; Research Program of Department of Science and Technology of Zhejiang Province[LGF19H180019] |
WOS研究方向 | Robotics |
语种 | 英语 |
WOS记录号 | WOS:000488067600011 |
出版者 | WORLD SCIENTIFIC PUBL CO PTE LTD |
资助机构 | Natural Science Foundation of Zhejiang Province ; National Natural Science Foundation of China ; Research Program of Department of Science and Technology of Zhejiang Province |
源URL | [http://ir.ia.ac.cn/handle/173211/26639] ![]() |
专题 | 融合创新中心_决策指挥与体系智能 |
通讯作者 | Wang, Xiaoyan |
作者单位 | 1.Zhejiang Univ Technol, Sch Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China 2.Zhejiang Univ, Affiliated Hosp 2, Sch Med, Hangzhou 310009, Zhejiang, Peoples R China 3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Xiaoyan,Zhong, Xingyu,Xia, Ming,et al. Automatic Carotid Artery Detection Using Attention Layer Region-Based Convolution Neural Network[J]. INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS,2019,16(4):17. |
APA | Wang, Xiaoyan.,Zhong, Xingyu.,Xia, Ming.,Jiang, Weiwei.,Huang, Xiaojie.,...&Huang, Xiangsheng.(2019).Automatic Carotid Artery Detection Using Attention Layer Region-Based Convolution Neural Network.INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS,16(4),17. |
MLA | Wang, Xiaoyan,et al."Automatic Carotid Artery Detection Using Attention Layer Region-Based Convolution Neural Network".INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS 16.4(2019):17. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。