Short-term synaptic plasticity expands the operational range of long-term synaptic changes in neural networks
文献类型:期刊论文
作者 | Zeng, Guanxiong2,3,4![]() ![]() ![]() ![]() |
刊名 | NEURAL NETWORKS
![]() |
出版日期 | 2019-10-01 |
卷号 | 118页码:140-147 |
关键词 | Reservoir computing Sequence learning and retrieval Short-term depression Synaptic heterogeneity Self-organized criticality Optimal information processing |
ISSN号 | 0893-6080 |
DOI | 10.1016/j.neunet.2019.06.002 |
通讯作者 | Huang, Xuhui(xuhui.huang@ia.ac.cn) ; Yu, Shan(shan.yu@nlpr.ia.ac.cn) |
英文摘要 | The brain is highly plastic, with synaptic weights changing across a wide range of time scales, from hundreds of milliseconds to days. Changes occurring at different temporal scales are believed to serve different purposes, with long-term changes for learning and memory and short-term changes for adaptation and synaptic computation. By studying the performance of reservoir computing (RC) models in a memory task, we revealed that short-term synaptic plasticity is fundamentally important for long-term synaptic changes in neural networks. Specifically, short-term depression (STD) greatly expands the operational range of a neural network in which it can accommodate long-term synaptic changes while maintaining system performance. This is achieved by dynamically adjusting neural networks close to a critical state. The effects of STD can be further strengthened by synaptic weight heterogeneity, resulting in networks that can tolerate very large, long-term changes in synaptic weights. Our results highlight a potential mechanism used by the brain to organize plasticity at different time scales, thereby maintaining optimal information processing while allowing internal structural changes necessary for learning and memory. (C) 2019 Elsevier Ltd. All rights reserved. |
WOS关键词 | SELF-ORGANIZED CRITICALITY ; NEURONAL AVALANCHES ; CORTICAL NETWORKS ; SYNAPSES ; COMPUTATION ; DEPRESSION ; CAPACITY ; CHAOS ; EDGE |
资助项目 | National Key Research and Development Program of China[2017YFA0105203] ; Natural Science Foundation of China[81471368] ; Natural Science Foundation of China[11505283] ; Natural Science Foundation of China[91732305] ; Natural Science Foundation of China[31620103905] ; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB32040200] ; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB32030200] ; Hundred-Talent Program of CAS ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SMC019] |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000483920500012 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | National Key Research and Development Program of China ; Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) ; Hundred-Talent Program of CAS ; Key Research Program of Frontier Sciences, CAS |
源URL | [http://ir.ia.ac.cn/handle/173211/27196] ![]() |
专题 | 自动化研究所_脑网络组研究中心 |
通讯作者 | Huang, Xuhui; Yu, Shan |
作者单位 | 1.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Brainnetome Ctr, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China 5.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zeng, Guanxiong,Huang, Xuhui,Jiang, Tianzi,et al. Short-term synaptic plasticity expands the operational range of long-term synaptic changes in neural networks[J]. NEURAL NETWORKS,2019,118:140-147. |
APA | Zeng, Guanxiong,Huang, Xuhui,Jiang, Tianzi,&Yu, Shan.(2019).Short-term synaptic plasticity expands the operational range of long-term synaptic changes in neural networks.NEURAL NETWORKS,118,140-147. |
MLA | Zeng, Guanxiong,et al."Short-term synaptic plasticity expands the operational range of long-term synaptic changes in neural networks".NEURAL NETWORKS 118(2019):140-147. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。