Deep convolution network for surveillance records super-resolution
文献类型:期刊论文
作者 | Shamsolmoali, Pourya1,2; Zareapoor, Masoumeh1; Jain, Deepak Kumar3; Jain, Vinay Kumar4; Yang, Jie1![]() |
刊名 | MULTIMEDIA TOOLS AND APPLICATIONS
![]() |
出版日期 | 2019-09-01 |
卷号 | 78期号:17页码:23815-23829 |
关键词 | Super-resolution Convolution neural networks Surveillance records Deep learning |
ISSN号 | 1380-7501 |
DOI | 10.1007/s11042-018-5915-7 |
通讯作者 | Shamsolmoali, Pourya(pshams55@gmail.com) ; Yang, Jie(jieyang@sjtu.edu.cn) |
英文摘要 | The aim of image super resolution (SR) is to recover low resolution (LR) input image or video to a visually desirable high-resolution (HR) one. The task of identifying an object in surveillance records is interesting, yet challenging due to the low resolution of the video. This paper, proposed a deep learning method for resolution recovery, the low-resolution objects and points in the surveillance records are up-sampled using a deep Convolutional Neural Network (CNN) to avoid problems of image boundary the data padded with zeros. The network is trained and tested on two surveillance datasets. Dissimilar to the outdated methods which operate components individually, our model performs combined optimization for all the layers. The proposed CNN model has a lightweight structure and minimal data pre-processing and computation cost. Testing our model and comparing with advanced techniques, we observed promising results. The code is accessible at https://github.com/Mzareapoor/Super-resolution |
WOS关键词 | IMAGE SUPERRESOLUTION |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000482419900002 |
出版者 | SPRINGER |
源URL | [http://ir.ia.ac.cn/handle/173211/27226] ![]() |
专题 | 离退休人员 |
通讯作者 | Shamsolmoali, Pourya; Yang, Jie |
作者单位 | 1.Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China 2.Euromediterranean Ctr Climate Change, Adv Sci Comp Div, Lecce, Italy 3.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China 4.Jaypee Univ Engn & Technol, Guna, India |
推荐引用方式 GB/T 7714 | Shamsolmoali, Pourya,Zareapoor, Masoumeh,Jain, Deepak Kumar,et al. Deep convolution network for surveillance records super-resolution[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2019,78(17):23815-23829. |
APA | Shamsolmoali, Pourya,Zareapoor, Masoumeh,Jain, Deepak Kumar,Jain, Vinay Kumar,&Yang, Jie.(2019).Deep convolution network for surveillance records super-resolution.MULTIMEDIA TOOLS AND APPLICATIONS,78(17),23815-23829. |
MLA | Shamsolmoali, Pourya,et al."Deep convolution network for surveillance records super-resolution".MULTIMEDIA TOOLS AND APPLICATIONS 78.17(2019):23815-23829. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。