MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection
文献类型:期刊论文
作者 | Zhang, Hui2,3![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
![]() |
出版日期 | 2018-09-01 |
卷号 | 67期号:9页码:8019-8030 |
关键词 | Traffic Object Detection Convolutional Neural Network Multi-scale Features Global Information |
ISSN号 | 0018-9545 |
DOI | 10.1109/TVT.2018.2843394 |
文献子类 | Article |
英文摘要 | Object detection plays an important role in intelligent transportation systems and intelligent vehicles. Although the topic of object detection has been studied for decades, it is still challenging to accurately detect objects under complex scenarios. The contributing factors for challenges include diversified object and background appearance, motion blur, adverse weather conditions, and complex interactions among objects. In this paper, we propose a new convolutional neural network (CNN) model for traffic object detection, by using multi-scale local and global feature representation (MFR). The proposed model consists of two components: a region proposal network that generates candidate object regions and an object detection network that incorporates multi-scale features and global information, namely MFR-CNN. These two components are jointly optimized. Once the system is trained, it can detect real-world traffic objects accurately, especially small objects and heavily occluded objects. We evaluate the proposed method on four benchmark datasets, achieving consistent improvements over the state of the art. |
WOS关键词 | INTELLIGENT TRANSPORTATION SYSTEMS ; VEHICLE DETECTION ; RECOGNITION ; VISION ; CLASSIFICATION ; MANAGEMENT ; NETWORKS ; TRACKING |
WOS研究方向 | Engineering ; Telecommunications ; Transportation |
语种 | 英语 |
WOS记录号 | WOS:000445397600010 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China(61533019 ; 91720000) |
源URL | [http://ir.ia.ac.cn/handle/173211/27904] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Wang, Kunfeng |
作者单位 | 1.Qingdao Acad Intelligent Ind, Innovat Ctr Parallel Vis, Qingdao 266000, Peoples R China 2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Natl Univ Def Technol, Res Ctr Computat Experiments & Parallel Syst Tech, Changsha 410073, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Hui,Wang, Kunfeng,Tian, Yonglin,et al. MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2018,67(9):8019-8030. |
APA | Zhang, Hui,Wang, Kunfeng,Tian, Yonglin,Gou, Chao,&Wang, Fei-Yue.(2018).MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,67(9),8019-8030. |
MLA | Zhang, Hui,et al."MFR-CNN: Incorporating Multi-Scale Features and Global Information for Traffic Object Detection".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 67.9(2018):8019-8030. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。