RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation
文献类型:期刊论文
作者 | Bharati, Sushil Pratap2; Cen, Feng3; Sharda, Ajay1; Wang, Guanghui2,4 |
刊名 | IEEE ACCESS
![]() |
出版日期 | 2018 |
卷号 | 6页码:48664-48674 |
关键词 | Fundamental Matrix Stereo Vision Robust Statistics Outliers Detection |
ISSN号 | 2169-3536 |
DOI | 10.1109/ACCESS.2018.2867915 |
文献子类 | Article |
英文摘要 | Detection of outliers present in noisy images for an accurate fundamental matrix estimation is an important research topic in the field of 3-D computer vision. Although a lot of research is conducted in this domain, not much study has been done in utilizing the robust statistics for successful outlier detection algorithms. This paper proposes to utilize a reprojection residual error-based technique for outlier detection. Given a noisy stereo image pair obtained from a pair of stereo cameras and a set of initial point correspondences between them, reprojection residual error and 3-sigma principle together with robust statistic-based Qn estimator (RES-Q) is proposed to efficiently detect the outliers and estimate the fundamental matrix with superior accuracy. The proposed RES-Q algorithm demonstrates greater precision and lower reprojection residual error than the state-of-the-art techniques. Moreover, in contrast to the assumption of Gaussian noise or symmetric noise model adopted by most previous approaches, the RES-Q is found to be robust for both symmetric and asymmetric random noise assumptions. The proposed algorithm is experimentally tested on both synthetic and real image data sets, and the experiments show that RES-Q is more effective and efficient than the classical outlier detection algorithms. |
WOS关键词 | INTELLIGENT VEHICLES ; EPIPOLAR GEOMETRY ; SAMPLE CONSENSUS ; FACTORIZATION ; REGISTRATION ; RECOGNITION ; REMOVAL ; VISION ; MOTION |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000445484000001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Kansas NASA EPSCoR Program(KNEP-PDG-10-2017-KU) ; United States Department of Agriculture (USDA)(USDA 2017-67007-26153) ; General Research Fund of the University of Kansas(2228901) ; National Natural Science Foundation of China(61573351) |
源URL | [http://ir.ia.ac.cn/handle/173211/27908] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
通讯作者 | Wang, Guanghui |
作者单位 | 1.Kansas State Univ, Biol & Agr Engn, Manhattan, KS 66506 USA 2.Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA 3.Tongji Univ, Coll Elect & Informat Engn, Dept Control Sci & Engn, Shanghai 200092, Peoples R China 4.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Bharati, Sushil Pratap,Cen, Feng,Sharda, Ajay,et al. RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation[J]. IEEE ACCESS,2018,6:48664-48674. |
APA | Bharati, Sushil Pratap,Cen, Feng,Sharda, Ajay,&Wang, Guanghui.(2018).RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation.IEEE ACCESS,6,48664-48674. |
MLA | Bharati, Sushil Pratap,et al."RES-Q: Robust Outlier Detection Algorithm for Fundamental Matrix Estimation".IEEE ACCESS 6(2018):48664-48674. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。