Joint Feature and Similarity Deep Learning for Vehicle Re-identification
文献类型:期刊论文
作者 | Zhu, Jianqing2; Zeng, Huanqiang3; Du, Yongzhao2; Lei, Zhen1,4![]() |
刊名 | IEEE ACCESS
![]() |
出版日期 | 2018 |
卷号 | 6页码:43724-43731 |
关键词 | Vehicle Re-identification Feature Representation Similarity Learning Deep Learning |
ISSN号 | 2169-3536 |
DOI | 10.1109/ACCESS.2018.2862382 |
文献子类 | Article |
英文摘要 | In this paper, a joint feature and similarity deep learning (JFSDL) method for vehicle reidentification is proposed. The proposed JFSDL method applies a siamese deep network to extract deep learning features for an input vehicle image pair simultaneously. The siamese deep network is learned under the joint identification and verification supervision. The joint identification and verification supervision is realized by linearly combining two softmax functions and one hybrid similarity learning function. Moreover, based on the hybrid similarity learning function, the similarity score between the input vehicle image pair is also obtained by simultaneously projecting the element-wise absolute difference and multiplication of the corresponding deep learning feature pair with a group of learned weight coefficients. Extensive experiments show that the proposed JFSDL method is superior to multiple state-of-the-art vehicle re-identification methods on both the VehicleID and VeRi data sets. |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000443980400001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China(61602191 ; Natural Science Foundation of Fujian Province(2018J01090 ; Science and Technology Bureau of Quanzhou(2017G027 ; Science and Technology Bureau of Xiamen(3502Z20173045) ; Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY418 ; Scientific Research Funds of Huaqiao University(16BS108 ; 61672521 ; 2016J01308) ; 2017G036) ; ZQN-YX403) ; 14BS201 ; 61375037 ; 14BS204) ; 61473291 ; 61572501 ; 61572536 ; 61502491 ; 61372107 ; 61401167) |
源URL | [http://ir.ia.ac.cn/handle/173211/27926] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_生物识别与安全技术研究中心 |
通讯作者 | Zeng, Huanqiang |
作者单位 | 1.Chinese Acad Sci, Ctr Biometr & Secur Res, Beijing 100190, Peoples R China 2.Huaqiao Univ, Coll Engn, Fujian Prov Acad Engn Res Ctr Ind Intellectual Te, Qunzhou 362021, Peoples R China 3.Huaqiao Univ, Coll Informat Sci & Engn, Xiamen 361021, Peoples R China 4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Jianqing,Zeng, Huanqiang,Du, Yongzhao,et al. Joint Feature and Similarity Deep Learning for Vehicle Re-identification[J]. IEEE ACCESS,2018,6:43724-43731. |
APA | Zhu, Jianqing,Zeng, Huanqiang,Du, Yongzhao,Lei, Zhen,Zheng, Lixin,&Cai, Canhui.(2018).Joint Feature and Similarity Deep Learning for Vehicle Re-identification.IEEE ACCESS,6,43724-43731. |
MLA | Zhu, Jianqing,et al."Joint Feature and Similarity Deep Learning for Vehicle Re-identification".IEEE ACCESS 6(2018):43724-43731. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。