Kernel Regularized Nonlinear Dictionary Learning for Sparse Coding
文献类型:期刊论文
作者 | Liu, Huaping1,2,3; Liu, He1,2,3; Sun, Fuchun1,2,3; Fang, Bin1,2,3 |
刊名 | IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
![]() |
出版日期 | 2019-04-01 |
卷号 | 49期号:4页码:766-775 |
关键词 | Kernel dictionary learning kernel sparse coding stacked auto-encoder (SAE) |
ISSN号 | 2168-2216 |
DOI | 10.1109/TSMC.2017.2736248 |
通讯作者 | Liu, Huaping(hpliu@tsinghua.edu.cn) |
英文摘要 | For most sparse coding methods, data samples are first encoded as hand-crafted features, followed by another separate learning step that generates dictionary and sparse codes. However, such feature representations may not be optimally compatible with the learning process, thus producing suboptimal results. In this paper, we propose a new architecture for non-linear dictionary learning with sparse coding, in which samples are mapped into sparse codes via carefully designed stacked auto-encoder (SAE) networks. We jointly learn a low-dimensional embedding of the data samples by means of an SAE and a dictionary in the low-dimensional space. Further, to leverage the prior knowledge, we develop a kernel regularized nonlinear dictionary learning method, which effectively incorporates the knowledge provided by the hand-crafted kernel. An iterative algorithm is developed to jointly search the solutions of the associated optimization problem and extensive experimental validations are performed to show that the proposed kernel regularized dictionary learning method achieves satisfactory performance. |
WOS关键词 | REPRESENTATION ; MACHINE ; RECOGNITION ; ALGORITHMS |
资助项目 | National Natural Science Foundation of China[U1613212] ; National Natural Science Foundation of China[61673238] ; National Natural Science Foundation of China[91420302] ; National Natural Science Foundation of China[61327809] ; National High-Tech Research and Development Plan[2015AA042306] ; Beijing Municipal Science and Technology Commission[D171100005017002] |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000461854900009 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; National High-Tech Research and Development Plan ; Beijing Municipal Science and Technology Commission |
源URL | [http://ir.ia.ac.cn/handle/173211/28052] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Liu, Huaping |
作者单位 | 1.Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China 2.Tsinghua Univ, State Key Lab Intelligent Technol & Syst, TNLIST, Beijing 100084, Peoples R China 3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Huaping,Liu, He,Sun, Fuchun,et al. Kernel Regularized Nonlinear Dictionary Learning for Sparse Coding[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2019,49(4):766-775. |
APA | Liu, Huaping,Liu, He,Sun, Fuchun,&Fang, Bin.(2019).Kernel Regularized Nonlinear Dictionary Learning for Sparse Coding.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,49(4),766-775. |
MLA | Liu, Huaping,et al."Kernel Regularized Nonlinear Dictionary Learning for Sparse Coding".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 49.4(2019):766-775. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。