A generalized multi-dictionary least squares framework regularized with multi-graph embeddings
文献类型:期刊论文
作者 | Abeo, Timothy Apasiba2,3; Shen, Xiang-Jun2; Bao, Bing-Kun4![]() |
刊名 | PATTERN RECOGNITION
![]() |
出版日期 | 2019-06-01 |
卷号 | 90页码:1-11 |
关键词 | Multi-view dimension reduction Least squares Multiple graphs Feature extraction Classification |
ISSN号 | 0031-3203 |
DOI | 10.1016/j.patcog.2019.01.012 |
通讯作者 | Shen, Xiang-Jun(xjshen@ujs.edu.cn) |
英文摘要 | Dimensionality reduction in high dimensional multi-view datasets is an important research topic. It can keep essential features to improve performance in subsequent tasks such as classification and clustering. This paper proposes a generalized framework, which extends the PCA idea of minimizing least squares reconstruction errors, to include data distribution and multiple dictionaries for preserving outliers-free global structures in multi-view datasets. To also preserve local manifold structures, multiple local graphs are incorporated. Finally two models, in Multi-dictionary Least Squares Framework regularized with Multi-graph Embeddings (MD-MGE), are proposed for preserving both global and local structures. Extensive experimental results on four multi-view datasets prove both methods outperform the existing comparative methods. Also, their accuracy rates improvements are statistically significant on all cases below the significance level of 0.05. (C) 2019 Elsevier Ltd. All rights reserved. |
WOS关键词 | CANONICAL CORRELATION-ANALYSIS ; LINEAR DISCRIMINANT-ANALYSIS ; DIMENSIONALITY REDUCTION ; PRESERVING PROJECTIONS ; CLASSIFICATION ; INFORMATION ; EXTENSIONS |
资助项目 | National Natural Science Foundation of China[61572240] ; National Natural Science Foundation of China[61622211] ; National Natural Science Foundation of China[61472392] ; National Natural Science Foundation of China[61620106009] ; Beijing Natural Science Foundation[4152053] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000463130400001 |
出版者 | ELSEVIER SCI LTD |
资助机构 | National Natural Science Foundation of China ; Beijing Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/28069] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_多媒体计算与图形学团队 |
通讯作者 | Shen, Xiang-Jun |
作者单位 | 1.Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China 2.JiangSu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China 3.Tamale Tech Univ, Sch Appl Sci, Box 3ER, Tamale, Ghana 4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 5.Univ North Carolina Charlotte, Dept Comp Sci, Charlotte, NC 28223 USA |
推荐引用方式 GB/T 7714 | Abeo, Timothy Apasiba,Shen, Xiang-Jun,Bao, Bing-Kun,et al. A generalized multi-dictionary least squares framework regularized with multi-graph embeddings[J]. PATTERN RECOGNITION,2019,90:1-11. |
APA | Abeo, Timothy Apasiba,Shen, Xiang-Jun,Bao, Bing-Kun,Zha, Zheng-Jun,&Fan, Jianping.(2019).A generalized multi-dictionary least squares framework regularized with multi-graph embeddings.PATTERN RECOGNITION,90,1-11. |
MLA | Abeo, Timothy Apasiba,et al."A generalized multi-dictionary least squares framework regularized with multi-graph embeddings".PATTERN RECOGNITION 90(2019):1-11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。