中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Behavior Action Mining

文献类型:期刊论文

作者Su, Peng1; Zeng, Daniel2; Zhao, Huimin3
刊名IEEE ACCESS
出版日期2019
卷号7页码:19954-19964
关键词Business decision support knowledge and data engineering tools and techniques mining methods and algorithms
ISSN号2169-3536
DOI10.1109/ACCESS.2019.2896141
通讯作者Su, Peng(peng.su.casia@gmail.com)
英文摘要The actionable behavioral rules suggest specific actions that may influence certain behavior in the stakeholders' best interest. In mining such rules, it was assumed previously that all attributes are categorical while the numerical attributes have been discretized in advance. However, this assumption significantly reduces the solution space, and thus hinders the potential of mining algorithms, especially when the numerical attributes are prevalent. As the numerical data are ubiquitous in business applications, there is a crucial need for new mining methodologies that can better leverage such data. To meet this need, in this paper, we define a new data mining problem, named behavior action mining, as a problem of continuous variable optimization of expected utility for action. We then develop three approaches to solving this new problem, which uses regression as a technical basis. The experimental results based on a marketing dataset demonstrate the validity and superiority of our proposed approaches.
WOS关键词ACTION RULES ; SEARCH ; WEB
资助项目MOST[2016QY02D0305] ; NNSFC[71462001] ; NNSFC Innovative Team[71621002] ; CAS Grant[ZDRW-XH-2017-3]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000463168700001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构MOST ; NNSFC ; NNSFC Innovative Team ; CAS Grant
源URL[http://ir.ia.ac.cn/handle/173211/28076]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心
通讯作者Su, Peng
作者单位1.Dali Univ, Sch Math & Comp Sci, Dali 671003, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Intelligent Control & Management Co, Beijing 100190, Peoples R China
3.Univ Wisconsin, Sheldon B Lubar Sch Business, Milwaukee, WI 53201 USA
推荐引用方式
GB/T 7714
Su, Peng,Zeng, Daniel,Zhao, Huimin. Behavior Action Mining[J]. IEEE ACCESS,2019,7:19954-19964.
APA Su, Peng,Zeng, Daniel,&Zhao, Huimin.(2019).Behavior Action Mining.IEEE ACCESS,7,19954-19964.
MLA Su, Peng,et al."Behavior Action Mining".IEEE ACCESS 7(2019):19954-19964.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。