Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset
文献类型:期刊论文
作者 | Guo, Hao2,3![]() |
刊名 | FRONTIERS IN NEUROSCIENCE
![]() |
出版日期 | 2017-12-01 |
卷号 | 11页码:18 |
关键词 | Alzheimer's disease fMRI minimum spanning tree high-order functional connectivity network feature selection classification |
ISSN号 | 1662-453X |
DOI | 10.3389/fnins.2017.00639 |
通讯作者 | Jie, Xiang(xiangjie_tyut@sina.com) |
英文摘要 | Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. |
WOS关键词 | RESTING-STATE FMRI ; DYNAMIC BRAIN CONNECTIVITY ; GRAPH-THEORY ; DISEASE ; EPILEPSY ; AMYGDALA ; MEMORY ; FLUCTUATIONS ; ARCHITECTURE ; PERFORMANCE |
资助项目 | National Natural Science Foundation of China[61472270] ; National Natural Science Foundation of China[61402318] ; National Natural Science Foundation of China[61672374] ; Natural Science Foundation of Shanxi Province[201601D021073] ; Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi[2016139] |
WOS研究方向 | Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000416808900001 |
出版者 | FRONTIERS MEDIA SA |
资助机构 | National Natural Science Foundation of China ; Natural Science Foundation of Shanxi Province ; Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi |
源URL | [http://ir.ia.ac.cn/handle/173211/28222] ![]() |
专题 | 自动化研究所_智能制造技术与系统研究中心_智能机器人团队 |
通讯作者 | Jie, Xiang |
作者单位 | 1.Shanxi Med Univ, Hosp 1, Dept Psychiat, Taiyuan, Shanxi, Peoples R China 2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China 3.Taiyuan Univ Technol, Coll Comp Sci & Technol, Dept Software Engn, Taiyuan, Shanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, Hao,Liu, Lei,Chen, Junjie,et al. Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset[J]. FRONTIERS IN NEUROSCIENCE,2017,11:18. |
APA | Guo, Hao,Liu, Lei,Chen, Junjie,Xu, Yong,&Jie, Xiang.(2017).Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset.FRONTIERS IN NEUROSCIENCE,11,18. |
MLA | Guo, Hao,et al."Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset".FRONTIERS IN NEUROSCIENCE 11(2017):18. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。