On generalized Erdos-Ginzburg-Ziv constants of C-n(r)
文献类型:期刊论文
作者 | Han, Dongchun2; Zhang, Hanbin1 |
刊名 | DISCRETE MATHEMATICS
![]() |
出版日期 | 2019-04-01 |
卷号 | 342期号:4页码:1117-1127 |
关键词 | Zero-sum theory Generalized Erdos-Ginzburg-Ziv constants |
ISSN号 | 0012-365X |
DOI | 10.1016/j.disc.2018.12.018 |
英文摘要 | Let G be an additive finite abelian group with exponent exp(G) = n. For any positive integer k, the kth Erdos-Ginzburg-Ziv constant s(kn) (G) is defined as the smallest positive integer t such that every sequence S in G of length at least t has a zero-sum subsequence of length kn. It is easy to see that s(kn)(C-n(r)) >= (k + r)n - r where n, r is an element of N. Kubertin conjectured that the equality holds for any k >= r. In this paper, we prove the following results: (1) For every positive integer k >= 6, we have s(kn)(C-n(3)) = (k + 3)n + O(n/ln n). (2) For every positive integer k >= 18, we have s(kn)(C-n(4)) = (k + 4)n + O(n/ln n) (3) For n is an element of N, assume that the largest prime power divisor of n is p(a) for some a is an element of N. For any fixed r >= 5, if p(t) >= r for some t is an element of N, then for any k is an element of N we have s(kpn)(t)(C-n(r)) <= (kp(t) + r)n + cr n/ln n, where c(r) is a constant that depends on r. Our results verify the conjecture of Kubertin asymptotically in the above cases. (C) 2019 Elsevier B.V. All rights reserved. |
资助项目 | National Science Foundation of China[11671218] ; Fundamental Research Funds for the Central Universities[2682016CX121] ; China Postdoctoral Science Foundation[2017M620936] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000460718800023 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/33465] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhang, Hanbin |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Southwest Jiaotong Univ, Dept Math, Chengdu 610000, Sichuan, Peoples R China |
推荐引用方式 GB/T 7714 | Han, Dongchun,Zhang, Hanbin. On generalized Erdos-Ginzburg-Ziv constants of C-n(r)[J]. DISCRETE MATHEMATICS,2019,342(4):1117-1127. |
APA | Han, Dongchun,&Zhang, Hanbin.(2019).On generalized Erdos-Ginzburg-Ziv constants of C-n(r).DISCRETE MATHEMATICS,342(4),1117-1127. |
MLA | Han, Dongchun,et al."On generalized Erdos-Ginzburg-Ziv constants of C-n(r)".DISCRETE MATHEMATICS 342.4(2019):1117-1127. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。