中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE

文献类型:期刊论文

作者Hou, Meichen1,2,3
刊名ACTA MATHEMATICA SCIENTIA
出版日期2019-07-01
卷号39期号:4页码:1195-1212
关键词Non-viscous impermeable problem rarefaction wave
ISSN号0252-9602
DOI10.1007/s10473-019-0421-1
英文摘要This article is concerned with the impermeable wall problem for an ideal polytropic model of non-viscous and heat-conductive gas in one-dimensional half space. It is shown that the 3-rarefaction wave is stable under some smallness conditions. The proof is given by an elementary energy method and the key point is to do the higher order derivative estimates with respect to t because of the less dissipativity of the system and the higher order derivative boundary terms.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000470266400021
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/34884]  
专题中国科学院数学与系统科学研究院
通讯作者Hou, Meichen
作者单位1.Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Acad Mil Med Sci, Inst Appl Math, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hou, Meichen. ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE[J]. ACTA MATHEMATICA SCIENTIA,2019,39(4):1195-1212.
APA Hou, Meichen.(2019).ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE.ACTA MATHEMATICA SCIENTIA,39(4),1195-1212.
MLA Hou, Meichen."ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE".ACTA MATHEMATICA SCIENTIA 39.4(2019):1195-1212.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。