ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE
文献类型:期刊论文
作者 | Hou, Meichen1,2,3 |
刊名 | ACTA MATHEMATICA SCIENTIA
![]() |
出版日期 | 2019-07-01 |
卷号 | 39期号:4页码:1195-1212 |
关键词 | Non-viscous impermeable problem rarefaction wave |
ISSN号 | 0252-9602 |
DOI | 10.1007/s10473-019-0421-1 |
英文摘要 | This article is concerned with the impermeable wall problem for an ideal polytropic model of non-viscous and heat-conductive gas in one-dimensional half space. It is shown that the 3-rarefaction wave is stable under some smallness conditions. The proof is given by an elementary energy method and the key point is to do the higher order derivative estimates with respect to t because of the less dissipativity of the system and the higher order derivative boundary terms. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000470266400021 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/34884] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Hou, Meichen |
作者单位 | 1.Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China 2.Acad Mil Med Sci, Inst Appl Math, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Hou, Meichen. ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE[J]. ACTA MATHEMATICA SCIENTIA,2019,39(4):1195-1212. |
APA | Hou, Meichen.(2019).ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE.ACTA MATHEMATICA SCIENTIA,39(4),1195-1212. |
MLA | Hou, Meichen."ASYMPTOTIC STABILITY OF THE RAREFACTION WAVE FOR THE NON-VISCOUS AND HEAT-CONDUCTIVE IDEAL GAS IN HALF SPACE".ACTA MATHEMATICA SCIENTIA 39.4(2019):1195-1212. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。