Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient
文献类型:期刊论文
作者 | Shi, Y. H.3; Zhao, Y. M.3; Wang, F. L.3; Tang, Y. F.1,2 |
刊名 | INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
![]() |
出版日期 | 2019-07-13 |
页码 | 15 |
关键词 | Multi-term time fractional diffusion-wave equations linear triangular finite element Crank-Nicolson approximation stability superclose and superconvergence |
ISSN号 | 0020-7160 |
DOI | 10.1080/00207160.2019.1639676 |
英文摘要 | The goal of this paper is to discuss high accuracy analysis of a fully-discrete scheme for 2D multi-term time fractional wave equations with variable coefficient on anisotropic meshes by approximating in space by linear triangular finite element method and in time by Crank-Nicolson scheme. The stability is firstly proved unconditionally. In the analysis of superclose properties, how to deal with the item for variable coefficient is the main difficulty. In order to do this, a new projection operator is defined and the relationship between the proposed projection operator and interpolation operator about linear triangular finite element is deduced. Consequently, the global superconvergence result is obtained by use of interpolation postprocessing technique. The numerical examples show that the proposed numerical method is highly accurate and computationally efficient. |
资助项目 | National Natural Science Foundation of China[11771438] ; National Natural Science Foundation of China[11471296] ; Key Scientific Research Projects in Universities of Henan Province[17A110011] ; Key Scientific Research Projects in Universities of Henan Province[19B110013] ; Program for Scientific and Technological Innovation Talents in Universities of Henan Province[19HASTIT025] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000476107000001 |
出版者 | TAYLOR & FRANCIS LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/35312] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zhao, Y. M. |
作者单位 | 1.Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing, Peoples R China 3.Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China |
推荐引用方式 GB/T 7714 | Shi, Y. H.,Zhao, Y. M.,Wang, F. L.,et al. Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,2019:15. |
APA | Shi, Y. H.,Zhao, Y. M.,Wang, F. L.,&Tang, Y. F..(2019).Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient.INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,15. |
MLA | Shi, Y. H.,et al."Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient".INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS (2019):15. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。