中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Conditional importance sampling for particle filters

文献类型:期刊论文

作者Zhang, Qingming2,3; Shi, Buhai3; Zhang, Yuhao1
刊名INFORMATION SCIENCES
出版日期2019-10-01
卷号501页码:388-396
关键词Importance sampling Conditional density Variance of importance weights Effective sample size Particle filter
ISSN号0020-0255
DOI10.1016/j.ins.2019.06.026
英文摘要In this paper, we present a new importance sampling method, namely the conditional importance sampling (CIS). This new method uses a conditional density as a proposal density and exploits rejection sampling, adaptively neglecting samples whose importance weights are relatively low. The CIS improves the efficiency of estimation without creating bias. We apply the CIS to the bootstrap filter to obtain a new algorithm, named the conditional bootstrap filter, which achieves higher estimation efficiency than the bootstrap filter and shows advantages over some other filters in our simulations. (C) 2019 Elsevier Inc. All rights reserved.
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000480663900023
出版者ELSEVIER SCIENCE INC
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/35388]  
专题中国科学院数学与系统科学研究院
通讯作者Zhang, Qingming
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
3.South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Qingming,Shi, Buhai,Zhang, Yuhao. Conditional importance sampling for particle filters[J]. INFORMATION SCIENCES,2019,501:388-396.
APA Zhang, Qingming,Shi, Buhai,&Zhang, Yuhao.(2019).Conditional importance sampling for particle filters.INFORMATION SCIENCES,501,388-396.
MLA Zhang, Qingming,et al."Conditional importance sampling for particle filters".INFORMATION SCIENCES 501(2019):388-396.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。