ENERGY STABLE SECOND ORDER LINEAR SCHEMES FOR THE ALLEN-CAHN PHASE-FIELD EQUATION
文献类型:期刊论文
作者 | Wang, Lin3; Yu, Haijun1,2 |
刊名 | COMMUNICATIONS IN MATHEMATICAL SCIENCES
![]() |
出版日期 | 2019 |
卷号 | 17期号:3页码:609-635 |
关键词 | Allen-Cahn equation energy stable stabilized semi-implicit scheme second order scheme error estimate |
ISSN号 | 1539-6746 |
英文摘要 | Phase-field model is a powerful mathematical tool to study the dynamics of interface and morphology changes in fluid mechanics and material sciences. However, numerically solving a phase field model for a real problem is a challenging task due to the non-convexity of the bulk energy and the small interface thickness parameter in the equation. In this paper, we propose two stabilized second order semi-implicit linear schemes for the Allen-Cahn phase-field equation based on backward differentiation formula and Crank-Nicolson method, respectively. In both schemes, the nonlinear bulk force is treated explicitly with two second-order stabilization terms, which make the schemes unconditionally energy stable and numerically efficient. By using a known result of the spectrum estimate of the linearized Allen-Cahn operator and some regularity estimates of the exact solution, we obtain an optimal second order convergence in time with a prefactor depending on the inverse of the characteristic interface thickness only in some lower polynomial order. Both 2-dimensional and 3-dimensional numerical results are presented to verify the accuracy and efficiency of proposed schemes. |
资助项目 | NNSFC[11771439] ; NNSFC[U1530401] ; NNSFC[91852116] ; China National Program on Key Basic Research Project[2015CB856003] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000485624800002 |
出版者 | INT PRESS BOSTON, INC |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/35536] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Wang, Lin |
作者单位 | 1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 2.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS & LSEC, Beijing 100190, Peoples R China 3.Beijing Computat Sci Res Ctr, CSRC, Beijing 100193, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Lin,Yu, Haijun. ENERGY STABLE SECOND ORDER LINEAR SCHEMES FOR THE ALLEN-CAHN PHASE-FIELD EQUATION[J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES,2019,17(3):609-635. |
APA | Wang, Lin,&Yu, Haijun.(2019).ENERGY STABLE SECOND ORDER LINEAR SCHEMES FOR THE ALLEN-CAHN PHASE-FIELD EQUATION.COMMUNICATIONS IN MATHEMATICAL SCIENCES,17(3),609-635. |
MLA | Wang, Lin,et al."ENERGY STABLE SECOND ORDER LINEAR SCHEMES FOR THE ALLEN-CAHN PHASE-FIELD EQUATION".COMMUNICATIONS IN MATHEMATICAL SCIENCES 17.3(2019):609-635. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。