中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
thegelfandkirillovdimensionofaunitaryhighestweightmodule

文献类型:期刊论文

作者Bai Zhanqiang1; Hunziker Markus2
刊名sciencechinamathematics
出版日期2015
卷号58期号:12页码:2489
ISSN号1674-7283
英文摘要During the last decade, a great deal of activity has been devoted to the calculation of the Hilbert- Poincare series of unitary highest weight representations and related modules in algebraic geometry. However, uniform formulas remain elusive-even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring (in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/39486]  
专题中国科学院数学与系统科学研究院
作者单位1.中国科学院数学与系统科学研究院
2.贝勒大学
推荐引用方式
GB/T 7714
Bai Zhanqiang,Hunziker Markus. thegelfandkirillovdimensionofaunitaryhighestweightmodule[J]. sciencechinamathematics,2015,58(12):2489.
APA Bai Zhanqiang,&Hunziker Markus.(2015).thegelfandkirillovdimensionofaunitaryhighestweightmodule.sciencechinamathematics,58(12),2489.
MLA Bai Zhanqiang,et al."thegelfandkirillovdimensionofaunitaryhighestweightmodule".sciencechinamathematics 58.12(2015):2489.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。