thegelfandkirillovdimensionofaunitaryhighestweightmodule
文献类型:期刊论文
作者 | Bai Zhanqiang1; Hunziker Markus2 |
刊名 | sciencechinamathematics
![]() |
出版日期 | 2015 |
卷号 | 58期号:12页码:2489 |
ISSN号 | 1674-7283 |
英文摘要 | During the last decade, a great deal of activity has been devoted to the calculation of the Hilbert- Poincare series of unitary highest weight representations and related modules in algebraic geometry. However, uniform formulas remain elusive-even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring (in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit. |
语种 | 英语 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/39486] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.中国科学院数学与系统科学研究院 2.贝勒大学 |
推荐引用方式 GB/T 7714 | Bai Zhanqiang,Hunziker Markus. thegelfandkirillovdimensionofaunitaryhighestweightmodule[J]. sciencechinamathematics,2015,58(12):2489. |
APA | Bai Zhanqiang,&Hunziker Markus.(2015).thegelfandkirillovdimensionofaunitaryhighestweightmodule.sciencechinamathematics,58(12),2489. |
MLA | Bai Zhanqiang,et al."thegelfandkirillovdimensionofaunitaryhighestweightmodule".sciencechinamathematics 58.12(2015):2489. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。