newnumericalmethodsforthecouplednonlinearschrodingerequations
文献类型:期刊论文
作者 | Xu Qiubin1; Chang Qianshun2 |
刊名 | actamathematicaeapplicataesinica
![]() |
出版日期 | 2010 |
卷号 | 000期号:002页码:205 |
ISSN号 | 0168-9673 |
英文摘要 | In this paper, three numerical schemes with high accuracy for the coupled Schrodinger equations are studied. The conserwtive properties of the schemes are obtained and the plane wave solution is analysised. The split step Runge-Kutta scheme is conditionally stable by linearized analyzed. The split step compact scheme and the split step spectral method are unconditionally stable. The trunction error of the schemes are discussed. The fusion of two solitions colliding with different β is shown in the figures. The numerical experments demonstrate that our algorithms are effective and reliable. |
语种 | 英语 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/42433] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.南京审计大学 2.中国科学院数学与系统科学研究院 |
推荐引用方式 GB/T 7714 | Xu Qiubin,Chang Qianshun. newnumericalmethodsforthecouplednonlinearschrodingerequations[J]. actamathematicaeapplicataesinica,2010,000(002):205. |
APA | Xu Qiubin,&Chang Qianshun.(2010).newnumericalmethodsforthecouplednonlinearschrodingerequations.actamathematicaeapplicataesinica,000(002),205. |
MLA | Xu Qiubin,et al."newnumericalmethodsforthecouplednonlinearschrodingerequations".actamathematicaeapplicataesinica 000.002(2010):205. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。