analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors
文献类型:期刊论文
作者 | Peng Geng1; Liu Ying1; Wang Jiyuan1; Gu Jifa2 |
刊名 | journalofsystemsscienceandsystemsengineering
![]() |
出版日期 | 2017 |
卷号 | 26期号:2页码:163 |
ISSN号 | 1004-3756 |
英文摘要 | Web search query data are obtained to reflect social spots and serve as novel economic indicators. When faced with high-dimensional query data, selecting keywords that have plausible predictive ability and can reduce dimensionality is critical. This paper presents a new integrative method that combines Hurst Exponent (HE) and Time Difference Correlation (TDC) analysis to select keywords with powerful predictive ability. The method is called the HE-TDC screening method and requires keywords with predictive ability to satisfy two characteristics, namely, high correlation and fluctuation memorability similar to the predicting target series. An empirical study is employed to predict the volume of tourism visitors in the Jiuzhai Valley scenic area. The study shows that keywords selected using HE-TDC method produce a model with better robustness and predictive ability. |
语种 | 英语 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/43223] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.中国科学院大学 2.中国科学院数学与系统科学研究院 |
推荐引用方式 GB/T 7714 | Peng Geng,Liu Ying,Wang Jiyuan,et al. analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors[J]. journalofsystemsscienceandsystemsengineering,2017,26(2):163. |
APA | Peng Geng,Liu Ying,Wang Jiyuan,&Gu Jifa.(2017).analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors.journalofsystemsscienceandsystemsengineering,26(2),163. |
MLA | Peng Geng,et al."analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors".journalofsystemsscienceandsystemsengineering 26.2(2017):163. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。