中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors

文献类型:期刊论文

作者Peng Geng1; Liu Ying1; Wang Jiyuan1; Gu Jifa2
刊名journalofsystemsscienceandsystemsengineering
出版日期2017
卷号26期号:2页码:163
ISSN号1004-3756
英文摘要Web search query data are obtained to reflect social spots and serve as novel economic indicators. When faced with high-dimensional query data, selecting keywords that have plausible predictive ability and can reduce dimensionality is critical. This paper presents a new integrative method that combines Hurst Exponent (HE) and Time Difference Correlation (TDC) analysis to select keywords with powerful predictive ability. The method is called the HE-TDC screening method and requires keywords with predictive ability to satisfy two characteristics, namely, high correlation and fluctuation memorability similar to the predicting target series. An empirical study is employed to predict the volume of tourism visitors in the Jiuzhai Valley scenic area. The study shows that keywords selected using HE-TDC method produce a model with better robustness and predictive ability.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/43223]  
专题中国科学院数学与系统科学研究院
作者单位1.中国科学院大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Peng Geng,Liu Ying,Wang Jiyuan,et al. analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors[J]. journalofsystemsscienceandsystemsengineering,2017,26(2):163.
APA Peng Geng,Liu Ying,Wang Jiyuan,&Gu Jifa.(2017).analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors.journalofsystemsscienceandsystemsengineering,26(2),163.
MLA Peng Geng,et al."analysisofthepredictioncapabilityofwebsearchdatabasedonthehetdcmethodpredictionofthevolumeofdailytourismvisitors".journalofsystemsscienceandsystemsengineering 26.2(2017):163.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。