中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
nonparametricidentificationfornonlinearautoregressivetimeseriesmodelsconvergencerates

文献类型:期刊论文

作者Cheng Ping; Lu Zudi
刊名chineseannalsofmathematicsseriesb
出版日期1999
卷号20期号:2页码:173
ISSN号0252-9599
英文摘要In this paper, the optimal convergence rates of estimators based on kernel approach for nonlinear AR model are investigated in the sense of Stone(17, 18). By combining the alpha-mixing property of the stationary solution with the characteristics of the model itself, the restrictive conditions in the literature which are not easy to be satisfied by the nonlinear AR model are removed, and the mild conditions are obtained to guarantee the optimal rates of the estimator of autoregression function. In addition, the strongly consistent estimator of the variance of white noise is also constructed.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/47251]  
专题中国科学院数学与系统科学研究院
作者单位中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Cheng Ping,Lu Zudi. nonparametricidentificationfornonlinearautoregressivetimeseriesmodelsconvergencerates[J]. chineseannalsofmathematicsseriesb,1999,20(2):173.
APA Cheng Ping,&Lu Zudi.(1999).nonparametricidentificationfornonlinearautoregressivetimeseriesmodelsconvergencerates.chineseannalsofmathematicsseriesb,20(2),173.
MLA Cheng Ping,et al."nonparametricidentificationfornonlinearautoregressivetimeseriesmodelsconvergencerates".chineseannalsofmathematicsseriesb 20.2(1999):173.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。