中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ON THE INTERIOR REGULARITY CRITERIA OF THE 3-D NAVIER-STOKES EQUATIONS INVOLVING TWO VELOCITY COMPONENTS

文献类型:期刊论文

作者Wang, Wendong4; Zhang, Liqun1,2; Zhang, Zhifei3
刊名DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
出版日期2018-05-01
卷号38期号:5页码:2609-2627
关键词Interior regularity criteria Navier-Stokes equations LPS criterion harmonic function suitable weak solution
ISSN号1078-0947
DOI10.3934/dcds.2018110
英文摘要We present some interior regularity criteria of the 3-D Navier-Stokes equations involving two components of the velocity. These results in particular imply that if the solution is singular at one point, then at least two components of the velocity have to blow up at the same point.
资助项目NSF of China[11671067] ; NSF of China[11425103] ; Fundamental Research Funds for the Central Universities ; NSFC[11471320] ; NSFC[11631008]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000438816700019
出版者AMER INST MATHEMATICAL SCIENCES-AIMS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/33417]  
专题数学所
通讯作者Wang, Wendong
作者单位1.Chinese Acad Sci, UCAS, Sch Math Sci, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Math, AMSS, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
3.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
4.Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wendong,Zhang, Liqun,Zhang, Zhifei. ON THE INTERIOR REGULARITY CRITERIA OF THE 3-D NAVIER-STOKES EQUATIONS INVOLVING TWO VELOCITY COMPONENTS[J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,2018,38(5):2609-2627.
APA Wang, Wendong,Zhang, Liqun,&Zhang, Zhifei.(2018).ON THE INTERIOR REGULARITY CRITERIA OF THE 3-D NAVIER-STOKES EQUATIONS INVOLVING TWO VELOCITY COMPONENTS.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,38(5),2609-2627.
MLA Wang, Wendong,et al."ON THE INTERIOR REGULARITY CRITERIA OF THE 3-D NAVIER-STOKES EQUATIONS INVOLVING TWO VELOCITY COMPONENTS".DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 38.5(2018):2609-2627.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。