中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ON THE EXISTENCE OF INVARIANT TORI IN NON-CONSERVATIVE DYNAMICAL SYSTEMS WITH DEGENERACY AND FINITE DIFFERENTIABILITY

文献类型:期刊论文

作者Li, Xuemei2; Shang, Zaijiu1
刊名DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
出版日期2019-07-01
卷号39期号:7页码:4225-4257
关键词Invariant torus small frequency degeneracy finite differentiability
ISSN号1078-0947
DOI10.3934/dcds.2019171
英文摘要In this paper, we establish a KAM-theorem about the existence of invariant tori in non-conservative dynamical systems with finitely differentiable vector fields and multiple degeneracies under the assumption that the integrable part is finitely differentiable with respect to parameters, instead of the usual assumption of analyticity. We prove these results by constructing approximation and inverse approximation lemmas in which all functions are finitely differentiable in parameters.
资助项目NNSF of China[11371132] ; NNSF of China[11671392]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000464312800023
出版者AMER INST MATHEMATICAL SCIENCES-AIMS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/34473]  
专题数学所
通讯作者Li, Xuemei
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Chinese Acad Sci, HLM,Acad Math & Syst Sci, Beijing 100190, Peoples R China
2.Hunan Normal Univ, Dept Math, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
推荐引用方式
GB/T 7714
Li, Xuemei,Shang, Zaijiu. ON THE EXISTENCE OF INVARIANT TORI IN NON-CONSERVATIVE DYNAMICAL SYSTEMS WITH DEGENERACY AND FINITE DIFFERENTIABILITY[J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,2019,39(7):4225-4257.
APA Li, Xuemei,&Shang, Zaijiu.(2019).ON THE EXISTENCE OF INVARIANT TORI IN NON-CONSERVATIVE DYNAMICAL SYSTEMS WITH DEGENERACY AND FINITE DIFFERENTIABILITY.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,39(7),4225-4257.
MLA Li, Xuemei,et al."ON THE EXISTENCE OF INVARIANT TORI IN NON-CONSERVATIVE DYNAMICAL SYSTEMS WITH DEGENERACY AND FINITE DIFFERENTIABILITY".DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 39.7(2019):4225-4257.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。