中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES

文献类型:期刊论文

作者Bufetov, Alexander, I1,2; Nikitin, Pavel P.3,4; Qiu, Yanqi5
刊名MOSCOW MATHEMATICAL JOURNAL
出版日期2019-04-01
卷号19期号:2页码:217-274
关键词Pfaffian point process stationary point process number rigidity
ISSN号1609-3321
DOI10.17323/1609-4514-2019-19-2-217-274
英文摘要Our first result states that the orthogonal and symplectic Bessel processes are rigid in the sense of Ghosh and Peres. Our argument in the Bessel case proceeds by an estimate of the variance of additive statistics in the spirit of Ghosh and Peres. Second, a sufficient condition for number rigidity of stationary Pfaffian processes, relying on the Kolmogorov criterion for interpolation of stationary processes and applicable, in particular, to Pfaffian sine processes, is given in terms of the asymptotics of the spectral measure for additive statistics.
资助项目European Research Council (ERC) under the European Union[647133] ; RFBR[18-31-20031] ; RFBR[17-01-00433] ; National Natural Science Foundation of China[NSFC Y7116335K1] ; National Natural Science Foundation of China[NSFC 11801547] ; National Natural Science Foundation of China[NSFC 11688101]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000475756300003
出版者INDEPENDENT UNIV MOSCOW-IUM
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/35218]  
专题数学所
通讯作者Bufetov, Alexander, I
作者单位1.Aix Marseille Univ, Cent Marseille, CNRS, Inst Math Marseille,UMR7373, 39 Rue F Joliot Curie, F-13453 Marseille, France
2.RAS, Steklov Math Inst, Moscow, Russia
3.Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg 191023, Russia
4.St Petersburg State Univ, St Petersburg, Russia
5.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Bufetov, Alexander, I,Nikitin, Pavel P.,Qiu, Yanqi. ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES[J]. MOSCOW MATHEMATICAL JOURNAL,2019,19(2):217-274.
APA Bufetov, Alexander, I,Nikitin, Pavel P.,&Qiu, Yanqi.(2019).ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES.MOSCOW MATHEMATICAL JOURNAL,19(2),217-274.
MLA Bufetov, Alexander, I,et al."ON NUMBER RIGIDITY FOR PFAFFIAN POINT PROCESSES".MOSCOW MATHEMATICAL JOURNAL 19.2(2019):217-274.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。