中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dancer-Fucik spectrum for fractional Schrodinger operators with a steep potential well on R-N

文献类型:期刊论文

作者Liu, Zhisu4; Luo, Haijun3; Zhang, Zhitao1,2
刊名NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
出版日期2019-12-01
卷号189页码:26
关键词Dancer-Fucik point spectrum Fractional Schrodinger operators Foliated Schwartz symmetric Nonresonance
ISSN号0362-546X
DOI10.1016/j.na.2019.06.024
英文摘要In this paper, we study Dancer-Fubik spectrum of the fractional Schrodinger operators which is defined as the set of (alpha, beta) is an element of R-2 such that (-Delta)(s) u + V-lambda(x)u = alpha u(+) + beta u(-) in R-N has a nontrivial solution u, where the potential V-lambda has a steep potential well for sufficiently large parameter lambda > 0. It is allowed that (-Delta)(s) + V-lambda has essential spectrum with finitely many eigenvalues below the infimum of sigma(ess) ((-Delta)(s) + V-lambda). Many difficulties are caused by general nonlocal operators, we develop new techniques to overcome them to construct the first nontrivial curve of Dancer-Fucik point spectrum by minimax methods, to show some qualitative properties of the curve, and to prove that the corresponding eigenfunctions are foliated Schwartz symmetric. As applications we obtain the existence of nontrivial solutions for nonlinear Schrodinger equations with nonresonant nonlinearity. (C) 2019 Elsevier Ltd. All rights reserved.
资助项目National Natural Science Foundation of China[11771428] ; National Natural Science Foundation of China[1170126] ; Natural Science Foundation of Hunan Province[2017JJ3265] ; Fundamental Research Funds for the Central Universities[531118010205]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000490149800006
出版者PERGAMON-ELSEVIER SCIENCE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/35909]  
专题数学所
通讯作者Zhang, Zhitao
作者单位1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, HCMS, HLM,CEMS, Beijing 100190, Peoples R China
3.Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
4.Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China
推荐引用方式
GB/T 7714
Liu, Zhisu,Luo, Haijun,Zhang, Zhitao. Dancer-Fucik spectrum for fractional Schrodinger operators with a steep potential well on R-N[J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,2019,189:26.
APA Liu, Zhisu,Luo, Haijun,&Zhang, Zhitao.(2019).Dancer-Fucik spectrum for fractional Schrodinger operators with a steep potential well on R-N.NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,189,26.
MLA Liu, Zhisu,et al."Dancer-Fucik spectrum for fractional Schrodinger operators with a steep potential well on R-N".NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 189(2019):26.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。