newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows
文献类型:期刊论文
作者 | Sun Xiaowei2; Wang Youde1![]() |
刊名 | sciencechinamathematics
![]() |
出版日期 | 2014 |
卷号 | 57期号:11页码:2247 |
ISSN号 | 1674-7283 |
英文摘要 | In this paper, a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized (third order) Landau-Lifshitz equation. On the other hand it could be thought of as a special case of the Schrodinger-Airy flow when the target manifold is a Kahler manifold with constant holomorphic sectional curvature. We show the local existence of the new flow on a complete Riemannian manifold with some assumptions on Ricci tensor. Moreover, if the target manifolds are Einstein or some certain type of locally symmetric spaces, the global results are obtained. |
资助项目 | [National Natural Science Foundation of China] |
语种 | 英语 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/39540] ![]() |
专题 | 数学所 |
作者单位 | 1.中国科学院数学与系统科学研究院 2.中央财经大学 |
推荐引用方式 GB/T 7714 | Sun Xiaowei,Wang Youde. newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows[J]. sciencechinamathematics,2014,57(11):2247. |
APA | Sun Xiaowei,&Wang Youde.(2014).newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows.sciencechinamathematics,57(11),2247. |
MLA | Sun Xiaowei,et al."newgeometricflowsonriemannianmanifoldsandapplicationstoschrodingerairyflows".sciencechinamathematics 57.11(2014):2247. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。