中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
compositequantileregressionestimationforpgarchprocesses

文献类型:期刊论文

作者Zhao Biao4; Chen Zhao1; Tao Guiping3; Chen Min2
刊名sciencechinamathematics
出版日期2016
卷号59期号:5页码:977
ISSN号1674-7283
英文摘要We consider the periodic generalized autoregressive conditional heteroskedasticity (P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator. The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions. The proposed methodology is also illustrated by VaR on stock price data.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/37318]  
专题应用数学研究所
作者单位1.Department of Statistics, Pennsylvnia State University
2.中国科学院数学与系统科学研究院
3.首都经济贸易大学
4.中国科学技术大学
推荐引用方式
GB/T 7714
Zhao Biao,Chen Zhao,Tao Guiping,et al. compositequantileregressionestimationforpgarchprocesses[J]. sciencechinamathematics,2016,59(5):977.
APA Zhao Biao,Chen Zhao,Tao Guiping,&Chen Min.(2016).compositequantileregressionestimationforpgarchprocesses.sciencechinamathematics,59(5),977.
MLA Zhao Biao,et al."compositequantileregressionestimationforpgarchprocesses".sciencechinamathematics 59.5(2016):977.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。