中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
empiricallikelihoodbasedsubsetselectionforpartiallylinearautoregressivemodels

文献类型:期刊论文

作者Han Yu1; Jin Yinghua2; Chen Min2
刊名actamathematicaeapplicataesinica
出版日期2013
卷号29期号:4页码:793
ISSN号0168-9673
英文摘要Based on the empirical likelihood method, the subset selection and hypothesis test for parameters in a partially linear autoregressive model are investigated. We show that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. We then present the definitions of the empirical likelihood-based Bayes information criteria (EBIC) and Akaike information criteria (EAIC). The results show that EBIC is consistent at selecting subset variables while EAIC is not. Simulation studies demonstrate that the proposed empirical likelihood confidence regions have better coverage probabilities than the least square method, while EBIC has a higher chance to select the true model than EAIC.
资助项目[National Natural Science Foundation of China]
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/45178]  
专题应用数学研究所
作者单位1.吉林大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Han Yu,Jin Yinghua,Chen Min. empiricallikelihoodbasedsubsetselectionforpartiallylinearautoregressivemodels[J]. actamathematicaeapplicataesinica,2013,29(4):793.
APA Han Yu,Jin Yinghua,&Chen Min.(2013).empiricallikelihoodbasedsubsetselectionforpartiallylinearautoregressivemodels.actamathematicaeapplicataesinica,29(4),793.
MLA Han Yu,et al."empiricallikelihoodbasedsubsetselectionforpartiallylinearautoregressivemodels".actamathematicaeapplicataesinica 29.4(2013):793.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。