中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
statisticalinferenceonseeminglyunrelatedsingleindexregressionmodels

文献类型:期刊论文

作者He Bing2; You Jinhong3; Chen Min1
刊名应用数学学报
出版日期2016
卷号32期号:4页码:945
ISSN号0168-9673
英文摘要In this article, we consider a class of seemingly unrelated single-index regression models. By taking the contemporaneous correlation among equations into account we construct the weighted estimators (WEs) for unknown parameters of the coefficients and the improved local polynomial estimators for the unknown functions, respectively. We establish the asymptotic normalities of these estimators, and show both of them are more asymptotically efficient than those ignoring the contemporaneous correlation. The performances of the proposed procedures are evaluated through simulation studies.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/46741]  
专题应用数学研究所
作者单位1.中国科学院数学与系统科学研究院
2.School of Mathematics,Jilin University
3.School of Statistics and Management,Shanghai University of Finance and Economics
推荐引用方式
GB/T 7714
He Bing,You Jinhong,Chen Min. statisticalinferenceonseeminglyunrelatedsingleindexregressionmodels[J]. 应用数学学报,2016,32(4):945.
APA He Bing,You Jinhong,&Chen Min.(2016).statisticalinferenceonseeminglyunrelatedsingleindexregressionmodels.应用数学学报,32(4),945.
MLA He Bing,et al."statisticalinferenceonseeminglyunrelatedsingleindexregressionmodels".应用数学学报 32.4(2016):945.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。