中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
gomafunctionalenrichmentanalysistoolbasedongomodules

文献类型:期刊论文

作者Huang Qiang; Wu Lingyun; Wang Yong; Zhang Xiangsun
刊名chinesejournalofcancer
出版日期2013
卷号32期号:4页码:195
ISSN号1000-467X
英文摘要Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but most output a long list of significantly enriched terms that are often redundant, making it difficult to extract the most meaningful functions. In this paper, we present GOMA, a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules. With this method, we systematically revealed functional GO modules, i.e., groups of functionally similar GO terms, via an optimization model and then ranked them by enrichment scores. Our new method simplifies enrichment analysis results by reducing redundancy, thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/49423]  
专题应用数学研究所
作者单位中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Huang Qiang,Wu Lingyun,Wang Yong,et al. gomafunctionalenrichmentanalysistoolbasedongomodules[J]. chinesejournalofcancer,2013,32(4):195.
APA Huang Qiang,Wu Lingyun,Wang Yong,&Zhang Xiangsun.(2013).gomafunctionalenrichmentanalysistoolbasedongomodules.chinesejournalofcancer,32(4),195.
MLA Huang Qiang,et al."gomafunctionalenrichmentanalysistoolbasedongomodules".chinesejournalofcancer 32.4(2013):195.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。