akelmbasedensemblelearningapproachforexchangerateforecasting
文献类型:期刊论文
作者 | Wei Yunjie2![]() |
刊名 | journalofsystemsscienceandinformation
![]() |
出版日期 | 2018 |
卷号 | 000期号:004页码:289 |
ISSN号 | 1478-9906 |
英文摘要 | In this paper, a KELM-based ensemble learning approach, integrating Granger causality test, grey relational analysis and KELM(Kernel Extreme Learning Machine), is proposed for the exchange rate forecasting. The study uses a set of sixteen macroeconomic variables including, import,export, foreign exchange reserves, etc. Furthermore, the selected variables are ranked and then three of them, which have the highest degrees of relevance with the exchange rate, are filtered out by Granger causality test and the grey relational analysis, to represent the domestic situation. Then, based on the domestic situation, KELM is utilized for medium-term RMB/USD forecasting. The empirical results show that the proposed KELM-based ensemble learning approach outperforms all other benchmark models in different forecasting horizons, which implies that the KELM-based ensemble learning approach is a powerful learning approach for exchange rates forecasting. |
语种 | 英语 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/38668] ![]() |
专题 | 系统科学研究所 |
作者单位 | 1.陕西师范大学 2.中国科学院数学与系统科学研究院 3.中国科学院大学 |
推荐引用方式 GB/T 7714 | Wei Yunjie,Sun Shaolong,Lai Kin Keung,et al. akelmbasedensemblelearningapproachforexchangerateforecasting[J]. journalofsystemsscienceandinformation,2018,000(004):289. |
APA | Wei Yunjie,Sun Shaolong,Lai Kin Keung,&Abbas Ghulam.(2018).akelmbasedensemblelearningapproachforexchangerateforecasting.journalofsystemsscienceandinformation,000(004),289. |
MLA | Wei Yunjie,et al."akelmbasedensemblelearningapproachforexchangerateforecasting".journalofsystemsscienceandinformation 000.004(2018):289. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。