中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
akelmbasedensemblelearningapproachforexchangerateforecasting

文献类型:期刊论文

作者Wei Yunjie2; Sun Shaolong2; Lai Kin Keung1; Abbas Ghulam3
刊名journalofsystemsscienceandinformation
出版日期2018
卷号000期号:004页码:289
ISSN号1478-9906
英文摘要In this paper, a KELM-based ensemble learning approach, integrating Granger causality test, grey relational analysis and KELM(Kernel Extreme Learning Machine), is proposed for the exchange rate forecasting. The study uses a set of sixteen macroeconomic variables including, import,export, foreign exchange reserves, etc. Furthermore, the selected variables are ranked and then three of them, which have the highest degrees of relevance with the exchange rate, are filtered out by Granger causality test and the grey relational analysis, to represent the domestic situation. Then, based on the domestic situation, KELM is utilized for medium-term RMB/USD forecasting. The empirical results show that the proposed KELM-based ensemble learning approach outperforms all other benchmark models in different forecasting horizons, which implies that the KELM-based ensemble learning approach is a powerful learning approach for exchange rates forecasting.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/38668]  
专题系统科学研究所
作者单位1.陕西师范大学
2.中国科学院数学与系统科学研究院
3.中国科学院大学
推荐引用方式
GB/T 7714
Wei Yunjie,Sun Shaolong,Lai Kin Keung,et al. akelmbasedensemblelearningapproachforexchangerateforecasting[J]. journalofsystemsscienceandinformation,2018,000(004):289.
APA Wei Yunjie,Sun Shaolong,Lai Kin Keung,&Abbas Ghulam.(2018).akelmbasedensemblelearningapproachforexchangerateforecasting.journalofsystemsscienceandinformation,000(004),289.
MLA Wei Yunjie,et al."akelmbasedensemblelearningapproachforexchangerateforecasting".journalofsystemsscienceandinformation 000.004(2018):289.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。