中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ageneralapproachbasedonautocorrelationtodetermineinputvariablesofneuralnetworksfortimeseriesforecasting

文献类型:期刊论文

作者Huang Wei2; Nakamori Yoshiteru2; Wang Shouyang1
刊名journalofsystemsscienceandcomplexity
出版日期2004
卷号017期号:003页码:297
ISSN号1009-6124
英文摘要Input selection is probably one of the most critical decision issues in neural network designing, because it has a great impact on forecasting performance. Among the many applications of artificial neural networks to finance, time series forecasting is perhaps one of the most challenging issues. Considering the features of neural networks, we propose a general approach called Autocorrelation Criterion (AC) to determine the inputs variables for a neural network. The purpose is to seek optimal lag periods, which are more predictive and less correlated. AC is a data-driven approach in that there is no prior assumptiona bout the models for time series under study. So it has extensive applications and avoids a lengthy experimentation and tinkering in input selection. We apply the approach to the determination of input variables for foreign exchange rate forecasting and conductcomparisons between AC and information-based in-sample model selection criterion. The experiment results show that AC outperforms information-based in-sample model selection criterion.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/41205]  
专题系统科学研究所
作者单位1.中国科学院数学与系统科学研究院
2.北陆先端科学技术大学院大学
推荐引用方式
GB/T 7714
Huang Wei,Nakamori Yoshiteru,Wang Shouyang. ageneralapproachbasedonautocorrelationtodetermineinputvariablesofneuralnetworksfortimeseriesforecasting[J]. journalofsystemsscienceandcomplexity,2004,017(003):297.
APA Huang Wei,Nakamori Yoshiteru,&Wang Shouyang.(2004).ageneralapproachbasedonautocorrelationtodetermineinputvariablesofneuralnetworksfortimeseriesforecasting.journalofsystemsscienceandcomplexity,017(003),297.
MLA Huang Wei,et al."ageneralapproachbasedonautocorrelationtodetermineinputvariablesofneuralnetworksfortimeseriesforecasting".journalofsystemsscienceandcomplexity 017.003(2004):297.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。