中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
quantilesonstreamanapplicationtomontecarlosimulation

文献类型:期刊论文

作者Wang Wei2; Ching Wai Ki1; Wang Shouyang2; Yu Lean3
刊名journalofsystemsscienceandinformation
出版日期2016
卷号4期号:4页码:334
ISSN号1478-9906
英文摘要Monte Carlo simulation is an efficient method to estimate quantile. However, it becomes a serious problem when a huge sample size is required but the memory is insufficient. In this paper, we apply the stream quantile algorithm to Monte Carlo simulation in order to estimate quantile with limited memory. A rigorous theoretical analysis on the properties of the ?_n-approximate quantile is proposed in this paper. We prove that if ?_n = o(n~(-1/2)),then the ?_n-approximate α-quantile computed by any deterministic stream quantile algorithm is a consistent and asymptotically normal estimator of the true quantile q_α. We suggest setting ?_n = 1/(n~(1/2) log_(10) n) in practice. Two deterministic stream quantile algorithms, including of GK algorithm and ZW algorithm, are employed to illustrate the performance of the ?_n-approximate quantile. The numerical example shows that the deterministic stream quantile algorithm can provide desired estimator of the true quantile with less memory.
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/44505]  
专题系统科学研究所
作者单位1.香港大学
2.中国科学院数学与系统科学研究院
3.北京化工大学
推荐引用方式
GB/T 7714
Wang Wei,Ching Wai Ki,Wang Shouyang,et al. quantilesonstreamanapplicationtomontecarlosimulation[J]. journalofsystemsscienceandinformation,2016,4(4):334.
APA Wang Wei,Ching Wai Ki,Wang Shouyang,&Yu Lean.(2016).quantilesonstreamanapplicationtomontecarlosimulation.journalofsystemsscienceandinformation,4(4),334.
MLA Wang Wei,et al."quantilesonstreamanapplicationtomontecarlosimulation".journalofsystemsscienceandinformation 4.4(2016):334.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。