Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation
文献类型:期刊论文
作者 | Brugnano, Luigi1; Gurioli, Gianmarco1; Sun, Yajuan2,3![]() |
刊名 | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
![]() |
出版日期 | 2019-05-01 |
卷号 | 351页码:117-135 |
关键词 | Korteweg-de Vries equation Hamiltonian partial differential equations Hamiltonian problems Energy-conserving methods Hamiltonian boundary value methods HBVMs |
ISSN号 | 0377-0427 |
DOI | 10.1016/j.cam.2018.10.014 |
英文摘要 | In this paper we study the efficient solution of the well-known Korteweg-de Vries equation, equipped with periodic boundary conditions. A Fourier-Galerkin space semi-discretization at first provides a large-size Hamiltonian ODE problem, whose solution in time is then carried out by means of energy-conserving methods in the HBVM class (Hamiltonian Boundary Value Methods). The efficient implementation of the methods for the resulting problem is also considered and several numerical examples are reported. (C) 2018 Elsevier B.V. All rights reserved. |
资助项目 | National Natural Science Foundation of China[11271357] ; University di Firenze, Italy (project "Risoluzione numerica di problemi Hamiltoniani ed applicazioni") |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000468555100010 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/34743] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Sun, Yajuan |
作者单位 | 1.Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 1000190, Peoples R China |
推荐引用方式 GB/T 7714 | Brugnano, Luigi,Gurioli, Gianmarco,Sun, Yajuan. Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2019,351:117-135. |
APA | Brugnano, Luigi,Gurioli, Gianmarco,&Sun, Yajuan.(2019).Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,351,117-135. |
MLA | Brugnano, Luigi,et al."Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 351(2019):117-135. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。