中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation

文献类型:期刊论文

作者Brugnano, Luigi1; Gurioli, Gianmarco1; Sun, Yajuan2,3
刊名JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
出版日期2019-05-01
卷号351页码:117-135
关键词Korteweg-de Vries equation Hamiltonian partial differential equations Hamiltonian problems Energy-conserving methods Hamiltonian boundary value methods HBVMs
ISSN号0377-0427
DOI10.1016/j.cam.2018.10.014
英文摘要In this paper we study the efficient solution of the well-known Korteweg-de Vries equation, equipped with periodic boundary conditions. A Fourier-Galerkin space semi-discretization at first provides a large-size Hamiltonian ODE problem, whose solution in time is then carried out by means of energy-conserving methods in the HBVM class (Hamiltonian Boundary Value Methods). The efficient implementation of the methods for the resulting problem is also considered and several numerical examples are reported. (C) 2018 Elsevier B.V. All rights reserved.
资助项目National Natural Science Foundation of China[11271357] ; University di Firenze, Italy (project "Risoluzione numerica di problemi Hamiltoniani ed applicazioni")
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000468555100010
出版者ELSEVIER SCIENCE BV
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/34743]  
专题计算数学与科学工程计算研究所
通讯作者Sun, Yajuan
作者单位1.Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 1000190, Peoples R China
推荐引用方式
GB/T 7714
Brugnano, Luigi,Gurioli, Gianmarco,Sun, Yajuan. Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2019,351:117-135.
APA Brugnano, Luigi,Gurioli, Gianmarco,&Sun, Yajuan.(2019).Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,351,117-135.
MLA Brugnano, Luigi,et al."Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 351(2019):117-135.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。