On greedy randomized coordinate descent methods for solving large linear least-squares problems
文献类型:期刊论文
作者 | Bai, Zhong-Zhi1,2![]() |
刊名 | NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
![]() |
出版日期 | 2019-08-01 |
卷号 | 26期号:4页码:15 |
关键词 | convergence property coordinate descent method linear least-squares problem randomized iteration |
ISSN号 | 1070-5325 |
DOI | 10.1002/nla.2237 |
英文摘要 | For solving large scale linear least-squares problem by iteration methods, we introduce an effective probability criterion for selecting the working columns from the coefficient matrix and construct a greedy randomized coordinate descent method. It is proved that this method converges to the unique solution of the linear least-squares problem when its coefficient matrix is of full rank, with the number of rows being no less than the number of columns. Numerical results show that the greedy randomized coordinate descent method is more efficient than the randomized coordinate descent method. |
资助项目 | National Natural Science Foundation of China[11671393] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000474224800003 |
出版者 | WILEY |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/35089] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Bai, Zhong-Zhi |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci Engn Comp, Inst Computat Math & Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Bai, Zhong-Zhi,Wu, Wen-Ting. On greedy randomized coordinate descent methods for solving large linear least-squares problems[J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,2019,26(4):15. |
APA | Bai, Zhong-Zhi,&Wu, Wen-Ting.(2019).On greedy randomized coordinate descent methods for solving large linear least-squares problems.NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,26(4),15. |
MLA | Bai, Zhong-Zhi,et al."On greedy randomized coordinate descent methods for solving large linear least-squares problems".NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 26.4(2019):15. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。