A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient
文献类型:期刊论文
作者 | Wang, Fenling3; Zhao, Yanmin3; Chen, Chen1; Wei, Yabing4; Tang, Yifa1,2![]() |
刊名 | COMPUTERS & MATHEMATICS WITH APPLICATIONS
![]() |
出版日期 | 2019-09-01 |
卷号 | 78期号:5页码:1288-1301 |
关键词 | Time-fractional diffusion equations Variable coefficient Quasi-Wilson nonconforming anisotropic finite element L2-1(sigma) formula Stability Superclose and superconvergence |
ISSN号 | 0898-1221 |
DOI | 10.1016/j.camwa.2018.11.029 |
英文摘要 | Based on the spatial quasi-Wilson nonconforming finite element method and temporal L2 - 1(sigma) , formula, a fully-discrete approximate scheme is proposed for a two-dimensional time-fractional diffusion equations with variable coefficient on anisotropic meshes. In order to demonstrate the stable analysis and error estimates, several lemmas are provided, which focus on high accuracy about projection and superclose estimate between the interpolation and projection. Unconditionally stable analysis are derived in L-2-norm and broken H-1-norm. Moreover, convergence result of accuracy O(h(2) + tau(2)) and superclose property of accuracy O(h(2) + tau(2)) are deduced by combining interpolation with projection, where h and tau are the step sizes in space and time, respectively. And then, the global superconvergence is presented by employing interpolation post processing operator. Finally, numerical results are provided to demonstrate the validity of the theoretical analysis. (C) 2018 Elsevier Ltd. All rights reserved. |
资助项目 | National Natural Science Foundation of China[11771438] ; National Natural Science Foundation of China[11471296] ; Key Scientific Research Projects in Universities of Henan Province, China[198110013] ; Program for Scientific and Technological Innovation Talents in Universities of Henan Province, China[19HASTIT025] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000482248100005 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/35477] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Zhao, Yanmin; Tang, Yifa |
作者单位 | 1.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China 3.Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China 4.Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Fenling,Zhao, Yanmin,Chen, Chen,et al. A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,2019,78(5):1288-1301. |
APA | Wang, Fenling,Zhao, Yanmin,Chen, Chen,Wei, Yabing,&Tang, Yifa.(2019).A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient.COMPUTERS & MATHEMATICS WITH APPLICATIONS,78(5),1288-1301. |
MLA | Wang, Fenling,et al."A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient".COMPUTERS & MATHEMATICS WITH APPLICATIONS 78.5(2019):1288-1301. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。