An alternating minimization method for robust principal component analysis
文献类型:期刊论文
作者 | Shen, Yuan3; Xu, Hongyu3; Liu, Xin1,2![]() |
刊名 | OPTIMIZATION METHODS & SOFTWARE
![]() |
出版日期 | 2019-11-02 |
卷号 | 34期号:6页码:1251-1276 |
关键词 | Robust principal component analysis symmetric low rank product minimization singular value decomposition alternating minimization |
ISSN号 | 1055-6788 |
DOI | 10.1080/10556788.2018.1496086 |
英文摘要 | This paper focuses on the solution of robust principal component analysis (RPCA) problems that arise in fields such as information theory, statistics, and engineering. We adopt a model that minimizes the sum of the observation error and sparsity measurement subject to the rank constraint. To solve this problem, we propose a two-step alternating minimization method. In the first step, a symmetric low-rank product minimization, which is essentially a partial singular value decomposition, is efficiently solved with moderate accuracy. The second step then derives a closed-form solution. The proposed approach is almost parameter-free, and global convergence to a strict local minimizer is guaranteed under very loose conditions. We compare the proposed approach with some existing solvers, and numerical experiments demonstrate the outstanding performance of our approach in solving synthetic and real RPCA test problems. In particular, we illustrate the significant potential of the proposed approach to solve large-size problems with moderate accuracy. |
资助项目 | National Natural Science Foundation of China[11726618] ; National Natural Science Foundation of China[11401295] ; Major Program of the National Social Science Foundation of China[12ZD114] ; National Social Science Foundation of China[17BTQ063] ; National Social Science Foundation of China[15BGL158] ; Qinglan Project of Jiangsu Province ; NSFC[11622112] ; NSFC[11471325] ; NSFC[91530204] ; NSFC[11688101] ; National Center for Mathematics and Interdisciplinary Sciences, CAS ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS010] |
WOS研究方向 | Computer Science ; Operations Research & Management Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000490007300007 |
出版者 | TAYLOR & FRANCIS LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/35849] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Shen, Yuan |
作者单位 | 1.Univ Chinese Acad Sci, Beijing, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China 3.Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Shen, Yuan,Xu, Hongyu,Liu, Xin. An alternating minimization method for robust principal component analysis[J]. OPTIMIZATION METHODS & SOFTWARE,2019,34(6):1251-1276. |
APA | Shen, Yuan,Xu, Hongyu,&Liu, Xin.(2019).An alternating minimization method for robust principal component analysis.OPTIMIZATION METHODS & SOFTWARE,34(6),1251-1276. |
MLA | Shen, Yuan,et al."An alternating minimization method for robust principal component analysis".OPTIMIZATION METHODS & SOFTWARE 34.6(2019):1251-1276. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。