中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
snigpropertyofmatrixlowrankfactorizationmodel

文献类型:期刊论文

作者Wang Hong1; Liu Xin2; Chen Xiaojun1; Yuan Yaxiang2
刊名journalofcomputationalmathematics
出版日期2018
卷号36期号:3页码:374
ISSN号0254-9409
英文摘要Recently, the matrix factorization model attracts increasing attentions in handling large-scale rank minimization problems, which is essentially a nonconvex minimization problem. Specifically, it is a quadratic least squares problem and consequently a quartic polynomial optimization problem. In this paper, we introduce a concept of the SNIG ("Second-order Necessary optimality Implies Global optimality") condition which stands for the property that any second-order stationary point of the matrix factorization model must be a global minimizer. Some scenarios under which the SNIG condition holds are presented. Furthermore, we illustrate by an example when the SNIG condition may fail.
资助项目[NSFC] ; [China 863 Program] ; [National Center for Mathematics and Interdisciplinary Sciences, CAS] ; [NSFC/Hong Kong Research Grant Council]
语种英语
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/46794]  
专题计算数学与科学工程计算研究所
作者单位1.香港理工大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Wang Hong,Liu Xin,Chen Xiaojun,et al. snigpropertyofmatrixlowrankfactorizationmodel[J]. journalofcomputationalmathematics,2018,36(3):374.
APA Wang Hong,Liu Xin,Chen Xiaojun,&Yuan Yaxiang.(2018).snigpropertyofmatrixlowrankfactorizationmodel.journalofcomputationalmathematics,36(3),374.
MLA Wang Hong,et al."snigpropertyofmatrixlowrankfactorizationmodel".journalofcomputationalmathematics 36.3(2018):374.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。