A Wholly Degradable, Rechargeable Zn-Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function
文献类型:期刊论文
作者 | Yang, Qi1; Huang, Zhaodong1; Li, Xinliang1; Liu, Zhuoxin1; Li, Hongfei1; Liang, Guojin1; Wang, Donghong1; Huang, Qing2; Zhang, Suojiang3; Chen, Shimou3 |
刊名 | ACS NANO
![]() |
出版日期 | 2019-07-01 |
卷号 | 13期号:7页码:8275-8283 |
关键词 | degradable Ti3C2 MXene rechargeable Zn-ion capacitor self-discharge |
ISSN号 | 1936-0851 |
DOI | 10.1021/acsnano.9b03650 |
英文摘要 | Degradable energy storage systems (ESSs) have been proposed to tackle increasing e-wastes such as heavy metals and toxic organic electrolytes. However, currently reported degradable ESSs are scarce because it is very difficult to make all of the electrochemical components degradable as they must be stable for energy storage. Here, we designed an all-component degradable and rechargeable Zn-MXene capacitor with outstanding anti-self-discharge function using zinc nanosheets and Ti3C2 MXene as electrodes. The whole capacitor can retain ca. 82.5% of the capacitance after 1000 cycles and be totally degraded within 7.25 days, comprehensively surpassing the current degradable supercapacitors (120 days, 400 cycles) and batteries (19 days, 0-20 cycles). In addition, while supercapacitors are notorious for intensive self-discharge, the Zn-MXene capacitor demonstrated the lowest self-discharge rate of 6.4 mV h(-1), better than all the previous supercapacitors with specifically designed anti-self-discharge components including electrodes (>300 mV h(-1)), electrolytes (12-50 mV h(-1)), and separators (20-400 mV h(-1)). This is illustrated by the as-proposed "static electricity-immune mechanism" which refers to breaking the electrostatic adsorption. This Zn-MXene capacitor represents a great advance in degradable rechargeable ESSs and provides a strategy to fundamentally overcome the self-discharge problem encountered by supercapacitors. |
WOS关键词 | DOUBLE-LAYER CAPACITOR ; HYBRID ENERGY-STORAGE ; POLYMER ; NATI2(PO4)(3) ; ELECTROLYTE ; NETWORKS ; STATE |
资助项目 | GRF Scheme[CityU 11305218] ; Science Technology and Innovation Committee of Shenzhen Municipality[JCYJ20170818103435068] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:000477786400092 |
出版者 | AMER CHEMICAL SOC |
资助机构 | GRF Scheme ; Science Technology and Innovation Committee of Shenzhen Municipality |
源URL | [http://ir.ipe.ac.cn/handle/122111/30348] ![]() |
专题 | 中国科学院过程工程研究所 |
通讯作者 | Chen, Shimou; Zhi, Chunyi |
作者单位 | 1.City Univ Hong Kong, Dept Mat Sci & Engn, 83 Tat Chee Ave, Hong Kong 999077, Peoples R China 2.Chinese Acad Sci, Ningbo Inst Ind Technol, Engn Lab Adv Energy Mat, Ningbo 315201, Zhejiang, Peoples R China 3.Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China 4.City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Qi,Huang, Zhaodong,Li, Xinliang,et al. A Wholly Degradable, Rechargeable Zn-Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function[J]. ACS NANO,2019,13(7):8275-8283. |
APA | Yang, Qi.,Huang, Zhaodong.,Li, Xinliang.,Liu, Zhuoxin.,Li, Hongfei.,...&Zhi, Chunyi.(2019).A Wholly Degradable, Rechargeable Zn-Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function.ACS NANO,13(7),8275-8283. |
MLA | Yang, Qi,et al."A Wholly Degradable, Rechargeable Zn-Ti3C2 MXene Capacitor with Superior Anti-Self-Discharge Function".ACS NANO 13.7(2019):8275-8283. |
入库方式: OAI收割
来源:过程工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。