中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Insect Detection and Classification Based on an Improved Convolutional Neural Network

文献类型:期刊论文

作者Xia, Denan1; Chen, Peng1,2; Wang, Bing3; Zhang, Jun4; Xie, Chengjun5,6
刊名SENSORS
出版日期2018-12-01
卷号18期号:12页码:12
关键词convolutional neural network insect detection field crops region proposal network VGG19
ISSN号1424-8220
DOI10.3390/s18124169
英文摘要

Regarding the growth of crops, one of the important factors affecting crop yield is insect disasters. Since most insect species are extremely similar, insect detection on field crops, such as rice, soybean and other crops, is more challenging than generic object detection. Presently, distinguishing insects in crop fields mainly relies on manual classification, but this is an extremely time-consuming and expensive process. This work proposes a convolutional neural network model to solve the problem of multi-classification of crop insects. The model can make full use of the advantages of the neural network to comprehensively extract multifaceted insect features. During the regional proposal stage, the Region Proposal Network is adopted rather than a traditional selective search technique to generate a smaller number of proposal windows, which is especially important for improving prediction accuracy and accelerating computations. Experimental results show that the proposed method achieves a heightened accuracy and is superior to the state-of-the-art traditional insect classification algorithms.

WOS关键词AUTOMATIC CLASSIFICATION
资助项目National Natural Science Foundation of China[61672035] ; National Natural Science Foundation of China[61300058] ; National Natural Science Foundation of China[61872004] ; National Natural Science Foundation of China[61472282] ; National Natural Science Foundation of China[31401293]
WOS研究方向Chemistry ; Electrochemistry ; Instruments & Instrumentation
语种英语
WOS记录号WOS:000454817100088
出版者MDPI
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/41651]  
专题合肥物质科学研究院_中科院合肥智能机械研究所
通讯作者Chen, Peng; Zhang, Jun
作者单位1.Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
2.Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Anhui, Peoples R China
3.Anhui Univ Technol, Sch Elect & Informat Engn, Maanshan 243032, Anhui, Peoples R China
4.Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Anhui, Peoples R China
5.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
6.Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Xia, Denan,Chen, Peng,Wang, Bing,et al. Insect Detection and Classification Based on an Improved Convolutional Neural Network[J]. SENSORS,2018,18(12):12.
APA Xia, Denan,Chen, Peng,Wang, Bing,Zhang, Jun,&Xie, Chengjun.(2018).Insect Detection and Classification Based on an Improved Convolutional Neural Network.SENSORS,18(12),12.
MLA Xia, Denan,et al."Insect Detection and Classification Based on an Improved Convolutional Neural Network".SENSORS 18.12(2018):12.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。