中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dimensionality Reduction Based on PARAFAC Model

文献类型:期刊论文

作者Yan, Ronghua3,4; Peng, Jinye1; Ma, Dongmei2
刊名JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY
出版日期2019-11
卷号63期号:6
ISSN号1062-3701;1943-3522
DOI10.2352/J.ImagingSci.Technol.2019.63.6.060501
产权排序1
英文摘要

In hyperspectral image analysis, dimensionality reduction is a preprocessing step for hyperspectral image (HSI) classification. Principal component analysis (PCA) reduces the spectral dimension and does not utilize the spatial information of an HSI. To solve it, the tensor decompositions have been successfully applied to joint noise reduction in spatial and spectral dimensions of hyperspectral images, such as parallel factor analysis (PARAFAC). However, the PARAFAC method does not reduce the dimension in the spectral dimension. To improve it, two new methods were proposed in this article, that is, combine PCA and PARAFAC to reduce both the dimension in the spectral dimension and the noise in the spatial and spectral dimensions. The experimental results indicate that the new methods improve the classification compared with the PARAFAC method. (C) 2019 Society for Imaging Science and Technology.

语种英语
WOS记录号WOS:000508022200016
出版者I S & T-SOC IMAGING SCIENCE TECHNOLOGY
源URL[http://ir.opt.ac.cn/handle/181661/93190]  
专题西安光学精密机械研究所_空间光学应用研究室
通讯作者Yan, Ronghua
作者单位1.Northwest Univ, Sch Informat & Technol, Xian 710127, Peoples R China
2.Xian Janssen Pharmaceut Ltd, Xian 710043, Peoples R China
3.Northwestern Polytech Univ, Sch Elect & Informat, Xian 710119, Peoples R China
4.Chinese Acad Sci, Space Opt Lab, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Yan, Ronghua,Peng, Jinye,Ma, Dongmei. Dimensionality Reduction Based on PARAFAC Model[J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY,2019,63(6).
APA Yan, Ronghua,Peng, Jinye,&Ma, Dongmei.(2019).Dimensionality Reduction Based on PARAFAC Model.JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY,63(6).
MLA Yan, Ronghua,et al."Dimensionality Reduction Based on PARAFAC Model".JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY 63.6(2019).

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。